
Julian Morales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/217623/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances in lithium-sulfur batteries using biomass-derived carbons as sulfur host. Renewable and Sustainable Energy Reviews, 2022, 154, 111783.	16.4	83
2	Synergistic effect between PPy:PSS copolymers and biomass-derived activated carbons: a simple strategy for designing sustainable high-performance Li–S batteries. Sustainable Energy and Fuels, 2022, 6, 1568-1586.	4.9	14
3	A Stable Highâ€Capacity Lithiumâ€lon Battery Using a Biomassâ€Derived Sulfurâ€Carbon Cathode and Lithiated Silicon Anode. ChemSusChem, 2021, 14, 3333-3343.	6.8	16
4	Contribution to the understanding of the performance differences between commercial current collectors in Li–S batteries. Journal of Energy Chemistry, 2021, 62, 295-306.	12.9	16
5	Revisiting the HKUSTâ€1/S Composite as an Electrode for Liâ€5 Batteries: Inherent Problems That Hinder Its Performance. European Journal of Inorganic Chemistry, 2021, 2021, 177-185.	2.0	6
6	Biomass Porous Carbons Derived from Banana Peel Waste as Sustainable Anodes for Lithium-Ion Batteries. Materials, 2021, 14, 5995.	2.9	13
7	Insights into the formation of N doped 3D-graphene quantum dots. Spectroscopic and computational approach. Journal of Colloid and Interface Science, 2020, 561, 678-686.	9.4	35
8	Highly graphitized carbon nanosheets with embedded Ni nanocrystals as anode for Li-ion batteries. Nano Research, 2020, 13, 86-94.	10.4	14
9	Lithium–Oxygen Battery Exploiting Highly Concentrated Glyme-Based Electrolytes. ACS Applied Energy Materials, 2020, 3, 12263-12275.	5.1	22
10	Porous Cr2O3@C composite derived from metal organic framework in efficient semi-liquid lithium-sulfur battery. Materials Chemistry and Physics, 2020, 255, 123484.	4.0	19
11	Pistachio Shell-Derived Carbon Activated with Phosphoric Acid: A More Efficient Procedure to Improve the Performance of Li–S Batteries. Nanomaterials, 2020, 10, 840.	4.1	33
12	Simple and Sustainable Preparation of Nonactivated Porous Carbon from Brewing Waste for Highâ€Performance Lithium–Sulfur Batteries. ChemSusChem, 2020, 13, 3439-3446.	6.8	25
13	MIL-88A Metal-Organic Framework as a Stable Sulfur-Host Cathode for Long-Cycle Li-S Batteries. Nanomaterials, 2020, 10, 424.	4.1	44
14	Alternative lithium-ion battery using biomass-derived carbons as environmentally sustainable anode. Journal of Colloid and Interface Science, 2020, 573, 396-408.	9.4	67
15	A Comparative Study of Particle Size Distribution of Graphene Nanosheets Synthesized by an Ultrasound-Assisted Method. Nanomaterials, 2019, 9, 152.	4.1	89
16	Physical activation of graphene: An effective, simple and clean procedure for obtaining microporous graphene for high-performance Li/S batteries. Nano Research, 2019, 12, 759-766.	10.4	38
17	High capacity semi-liquid lithium sulfur cells with enhanced reversibility for application in new-generation energy storage systems. Journal of Power Sources, 2019, 412, 575-585.	7.8	23
18	A Lithiumâ€lon Battery using a 3 Dâ€Array Nanostructured Graphene–Sulfur Cathode and a Silicon Oxideâ€Based Anode. ChemSusChem, 2018, 11, 1512-1520.	6.8	46

#	Article	IF	CITATIONS
19	Low-cost disordered carbons for Li/S batteries: A high-performance carbon with dual porosity derived from cherry pits. Nano Research, 2018, 11, 89-100.	10.4	88
20	Biomass-derived carbon/Ĵ³-MnO2 nanorods/S composites prepared by facile procedures with improved performance for Li/S batteries. Electrochimica Acta, 2018, 292, 522-531.	5.2	28
21	The Role of Current Collector in Enabling the High Performance of Li/S Battery. ChemistrySelect, 2018, 3, 10371-10377.	1.5	22
22	Versatility of a Nitrogenâ€Containing Monolithic Porous Carbon for Lithiumâ€Based Energy Storage ChemistrySelect, 2018, 3, 8560-8567.	1.5	3
23	Lithium sulfur battery exploiting material design and electrolyte chemistry: 3D graphene framework and diglyme solution. Journal of Power Sources, 2018, 397, 102-112.	7.8	37
24	Almond Shell as a Microporous Carbon Source for Sustainable Cathodes in Lithium–Sulfur Batteries. Materials, 2018, 11, 1428.	2.9	42
25	Simultaneous recovery of Zn and Mn from used batteries in acidic and alkaline mediums: A comparative study. Waste Management, 2017, 68, 518-526.	7.4	43
26	Lithium battery using sulfur infiltrated in three-dimensional flower-like hierarchical porous carbon electrode. Materials Chemistry and Physics, 2016, 180, 82-88.	4.0	23
27	Improved performance of electrodes based on carbonized olive stones/S composites by impregnating with mesoporous TiO 2 for advanced Li—S batteries. Journal of Power Sources, 2016, 313, 21-29.	7.8	39
28	Solvothermal-induced 3D graphene networks: Role played by the structural and textural properties on lithium storage. Electrochimica Acta, 2016, 222, 914-920.	5.2	13
29	Use of Polyelectrolytes for the Fabrication of Porous NiO Films by Electrophoretic Deposition for Supercapacitor Electrodes. Electrochimica Acta, 2016, 211, 110-118.	5.2	35
30	A long-life lithium ion sulfur battery exploiting high performance electrodes. Chemical Communications, 2015, 51, 14540-14542.	4.1	37
31	Deficiencies of Chemically Reduced Graphene as Electrode in Full Li-Ion Cells. Electrochimica Acta, 2015, 165, 365-371.	5.2	19
32	Nickel Oxide/Nickel Foam Composite as Supercapacitor Electrode via Electrophoretic Deposition. Key Engineering Materials, 2015, 654, 58-64.	0.4	3
33	Relevance of the Semiconductor Microstructure in the Pseudocapacitance of the Electrodes Fabricated by EPD of Binder-Free β-Ni(OH) ₂ Nanoplatelets. Journal of the Electrochemical Society, 2015, 162, D3001-D3012.	2.9	21
34	Cyclability of binder-free β-Ni(OH)2 anodes shaped by EPD for Li-ion batteries. Journal of the European Ceramic Society, 2015, 35, 573-584.	5.7	17
35	Efficient behaviour of hematite towards the photocatalytic degradation of NO gases. Applied Catalysis B: Environmental, 2015, 165, 529-536.	20.2	63
36	Enhanced Electrochemical Performance of Maghemite/Graphene Nanosheets Composite as Electrode in Half and Full Li–Ion Cells. Electrochimica Acta, 2014, 130, 551-558.	5.2	51

#	Article	IF	CITATIONS
37	Lithium–sulfur batteries with activated carbons derived from olive stones. Carbon, 2014, 70, 241-248.	10.3	112
38	Insights on the electrode/electrolyte interfaces in LiFePO4 based cells with LiAl(Al) and Li(Mg) anodes. Journal of Electroanalytical Chemistry, 2014, 732, 53-60.	3.8	6
39	Ordered mesoporous carbons obtained by a simple soft template method as sulfur immobilizers for lithium–sulfur cells. Physical Chemistry Chemical Physics, 2014, 16, 17332-17340.	2.8	35
40	On the potential use of carbon-free mesoporous precursors of LiFePO4 for lithium-ion batteries electrode. Solid State Ionics, 2014, 255, 30-38.	2.7	5
41	Contribution to the Understanding of Capacity Fading in Graphene Nanosheets Acting as an Anode in Full Li-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 3290-3298.	8.0	40
42	Improving the electrochemical properties of nanosized LiFePO4-based electrode by boron doping. Electrochimica Acta, 2014, 135, 558-567.	5.2	29
43	A High-Capacity Anode for Lithium Batteries Consisting of Mesoporous NiO Nanoplatelets. Energy & Fuels, 2013, 27, 5545-5551.	5.1	49
44	Enhanced photocatalytic degradation of NOx gases by regulating the microstructure of mortar cement modified with titanium dioxide. Building and Environment, 2013, 69, 55-63.	6.9	90
45	Controlling microstructure in cement based mortars by adjusting the particle size distribution of the raw materials. Construction and Building Materials, 2013, 41, 139-145.	7.2	15
46	Preparation of Sustainable Photocatalytic Materials through the Valorization of Industrial Wastes. ChemSusChem, 2013, 6, 2340-2347.	6.8	9
47	Electrochemical performance of a graphene nanosheets anode in a high voltage lithium-ion cell. Physical Chemistry Chemical Physics, 2013, 15, 20444.	2.8	27
48	Electrochemical properties of ultrasonically prepared Ni(OH)2 nanosheets inÂlithium cells. Journal of Power Sources, 2013, 238, 366-371.	7.8	21
49	On the limited electroactivity of Li2NiTiO4 nanoparticles in lithium batteries. Electrochimica Acta, 2013, 100, 93-100.	5.2	19
50	Aqueous Rechargeable Lithium Battery Based on LiNi _{0.5} Mn _{1.5} O ₄ Spinel with Promising Performance. Energy & Fuels, 2013, 27, 7854-7857.	5.1	18
51	Vaporâ€Phase Fabrication of βâ€ŀron Oxide Nanopyramids for Lithiumâ€ŀon Battery Anodes. ChemPhysChem, 2012, 13, 3798-3801.	2.1	21
52	On the Performances of Cu _{<i>x</i>} O-TiO ₂ (<i>x</i> = 1, 2) Nanomaterials As Innovative Anodes for Thin Film Lithium Batteries. ACS Applied Materials & Interfaces, 2012, 4, 3610-3619.	8.0	64
53	Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted?. Nanoscale, 2012, 4, 2083.	5.6	129
54	Use of Industrial Waste for the Manufacturing of Sustainable Building Materials. ChemSusChem, 2012, 5, 694-699.	6.8	9

#	Article	lF	CITATIONS
55	Influence of the lithium salt electrolyte on the electrochemical performance of copper/LiFePO4 composites. Electrochimica Acta, 2012, 61, 57-63.	5.2	9
56	Anchoring Si nanoparticles to carbon nanofibers: an efficient procedure for improving Si performance in Li batteries. Journal of Materials Chemistry, 2011, 21, 811-818.	6.7	37
57	Use of Olive Biomass Fly Ash in the Preparation of Environmentally Friendly Mortars. Environmental Science & Technology, 2011, 45, 6991-6996.	10.0	44
58	XAS study of the reversible reactivity mechanism of micro- and nanostructured electrodeposited Cu2O thin films towards lithium. Journal of Materials Chemistry, 2011, 21, 5368.	6.7	24
59	Limitations of Disordered Carbons Obtained from Biomass as Anodes for Real Lithiumâ€lon Batteries. ChemSusChem, 2011, 4, 658-663.	6.8	87
60	Improved capacitive properties of layered manganese dioxide grown as nanowires. Journal of Power Sources, 2011, 196, 3350-3354.	7.8	54
61	Cobalt Oxide Nanomaterials by Vapor-Phase Synthesis for Fast and Reversible Lithium Storage. Journal of Physical Chemistry C, 2010, 114, 10054-10060.	3.1	61
62	Electrochemical instability of LiV3O8 as an electrode material for aqueous rechargeable lithium batteries. Journal of Power Sources, 2010, 195, 4318-4321.	7.8	57
63	Re-examining the effect of ZnO on nanosized 5V LiNi0.5Mn1.5O4 spinel: An effective procedure for enhancing its rate capability at room and high temperatures. Journal of Power Sources, 2010, 195, 4278-4284.	7.8	97
64	Use of granite sludge wastes for the production of coloured cement-based mortars. Cement and Concrete Composites, 2010, 32, 617-622.	10.7	119
65	Cycling-induced stress in lithium ion negative electrodes: LiAl/LiFePO4 and Li4Ti5O12/LiFePO4 cells. Electrochimica Acta, 2010, 55, 3075-3082.	5.2	40
66	3D Gold Nanocrystal Arrays: A Framework for Reversible Lithium Storage. Journal of Physical Chemistry C, 2010, 114, 2360-2364.	3.1	5
67	Improving the Performance of Biomass-Derived Carbons in Li-Ion Batteries by Controlling the Lithium Insertion Process. Journal of the Electrochemical Society, 2010, 157, A791.	2.9	84
68	High-energy, efficient and transparent electrode for lithium batteries. Journal of Materials Chemistry, 2010, 20, 2847.	6.7	23
69	Graphitized Carbons of Variable Morphology and Crystallinity: A Comparative Study of Their Performance in Lithium Cells. Journal of the Electrochemical Society, 2009, 156, A986.	2.9	43
70	A LiFePO[sub 4]-Based Cell with Li[sub x](Mg) as Lithium Storage Negative Electrode. Electrochemical and Solid-State Letters, 2009, 12, A145.	2.2	7
71	Suppressing Irreversible Capacity in Low Cost Disordered Carbons for Li-Ion Batteries. Electrochemical and Solid-State Letters, 2009, 12, A167.	2.2	11
72	Nanosized Si/cellulose fiber/carbon composites as high capacity anodes for lithium-ion batteries: A galvanostatic and dilatometric study. Electrochimica Acta, 2009, 54, 6713-6717.	5.2	41

#	Article	IF	CITATIONS
73	Effect of C and Au additives produced by simple coaters on the surface and the electrochemical properties of nanosized LiFePO4. Journal of Electroanalytical Chemistry, 2009, 631, 29-35.	3.8	33
74	Effect of brief heat-curing on microstructure and mechanical properties in fresh cement based mortars. Cement and Concrete Research, 2009, 39, 573-579.	11.0	19
75	Combining 5V LiNi0.5Mn1.5O4 spinel and Si nanoparticles for advanced Li-ion batteries. Electrochemistry Communications, 2009, 11, 1061-1064.	4.7	40
76	A high energy Li-ion battery based on nanosized LiNi0.5Mn1.5O4 cathode material. Journal of Power Sources, 2008, 183, 310-315.	7.8	46
77	Electrochemical activity of rock-salt-structured LiFeO2/Li4/3Ti2/3O2 nanocomposites in lithium cells. Journal of Nanoparticle Research, 2008, 10, 217-226.	1.9	13
78	Elucidating the Beneficial Effect of Vinylene Carbonate on the Electrochemistry of Antimony Electrodes in Lithium Batteries. ChemPhysChem, 2008, 9, 2610-2617.	2.1	11
79	Polymerâ€Mediated Growth of Highly Crystalline Nano―and Microâ€Sized LiNi0.5Mn1.5O4Spinels. European Journal of Inorganic Chemistry, 2008, 2008, 3295-3302.	2.0	15
80	A simple route to high performance nanometric metallic materials for Li-ion batteries involving the use of cellulose: The case of Sb. Journal of Power Sources, 2008, 175, 553-557.	7.8	37
81	PMMA-assisted synthesis of Li1â^'xNi0.5Mn1.5O4â^'δfor high-voltage lithium batteries with expanded rate capability at high cycling temperatures. Journal of Power Sources, 2008, 180, 852-858.	7.8	41
82	Insights into the electrochemical activity of nanosized α-LiFeO2. Electrochimica Acta, 2008, 53, 6366-6371.	5.2	39
83	Precipitation of CoS vs Ceramic Synthesis for Improved Performance in Lithium Cells. Journal of the Electrochemical Society, 2008, 155, A189.	2.9	38
84	Nano-Si/Cellulose Composites as Anode Materials for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2008, 11, A101.	2.2	31
85	Effects of Coating with Gold on the Performance of Nanosized LiNi[sub 0.5]Mn[sub 1.5]O[sub 4] for Lithium Batteries. Journal of the Electrochemical Society, 2007, 154, A178.	2.9	62
86	Nanostructured Cu2O thin film electrodes prepared by electrodeposition for rechargeable lithium batteries. Thin Solid Films, 2007, 515, 5505-5511.	1.8	54
87	Highly electroactive nanosized α-LiFeO2. Electrochemistry Communications, 2007, 9, 2116-2120.	4.7	36
88	Use of limestone obtained from waste of the mussel cannery industry for the production of mortars. Cement and Concrete Research, 2007, 37, 559-564.	11.0	80
89	Electrochemical properties of electrodeposited nicked phosphide thin films in lithium cells. Journal of Power Sources, 2007, 171, 870-878.	7.8	41
90	EPD of thick films for their application in lithium batteries. Journal of the European Ceramic Society, 2007, 27, 3823-3827.	5.7	20

#	Article	IF	CITATIONS
91	Antagonistic effects of copper on the electrochemical performance of LiFePO4. Electrochimica Acta, 2007, 53, 920-926.	5.2	17
92	Relation between the magnetic properties and the crystal and electronic structures of manganese spinels LiNi0.5Mn1.5O4 and LiCu0.5Mn1.5O4â~î´ (0<î<0.125). Journal of Applied Physics, 2006, 100, 093908.	2.5	26
93	Beneficial effects of Mo on the electrochemical properties of tin as an anode material for lithium batteries. Electrochimica Acta, 2006, 51, 3391-3398.	5.2	11
94	Positive thin electrodes obtained from hydrothermally synthesized 4BS for lead-acid batteries. Journal of Power Sources, 2006, 157, 579-583.	7.8	7
95	LiNi0.5Mn1.5O4 thick-film electrodes prepared by electrophoretic deposition for use in high voltage lithium-ion batteries. Journal of Power Sources, 2006, 158, 583-590.	7.8	42
96	Synthesis and characterization of lead dioxide active material for lead-acid batteries. Journal of Power Sources, 2006, 158, 831-836.	7.8	62
97	Electrochemical properties of LiNi0.5Mn1.5O4 films prepared by spin-coating deposition. Journal of Power Sources, 2006, 162, 606-613.	7.8	28
98	Electrochemical reaction of lithium with nanosized vanadium antimonate. Journal of Solid State Chemistry, 2006, 179, 2554-2561.	2.9	21
99	A New and Fast Synthesis of Nanosized LiFePO4 Electrode Materials. European Journal of Inorganic Chemistry, 2006, 2006, 1758-1764.	2.0	33
100	Crystallinity Control of a Nanostructured LiNi0.5Mn1.5O4 Spinel via Polymer-AssistedÂSynthesis: A Method for Improving Its Rate Capability and Performance in 5 V Lithium Batteries. Advanced Functional Materials, 2006, 16, 1904-1912.	14.9	217
101	A First-Principles Investigation of the Role Played by Oxygen Deficiency in the Electrochemical Properties of LiCu[sub 0.5]Mn[sub 1.5]O[sub 4â~1] Spinels. Journal of the Electrochemical Society, 2006, 153, A2098.	2.9	15
102	Nanocrystalline materials obtained by using a simple, rapid method for rechargeable lithium batteries. Journal of Power Sources, 2005, 150, 192-201.	7.8	39
103	Use of low-temperature nanostructured CuO thin films deposited by spray-pyrolysis in lithium cells. Thin Solid Films, 2005, 474, 133-140.	1.8	212
104	Expanding the Rate Capabilities of the LiNi[sub 0.5]Mn[sub 1.5]O[sub 4] Spinel by Exploiting the Synergistic Effect Between Nano and Microparticles. Electrochemical and Solid-State Letters, 2005, 8, A641.	2.2	40
105	Oxygen Lattice Instability as a Capacity Fading Mechanism for 5 V Cathode Materials. Journal of the Electrochemical Society, 2005, 152, A6.	2.9	27
106	Electrodeposition of Cu[sub 2]O: An Excellent Method for Obtaining Films of Controlled Morphology and Good Performance in Li-Ion Batteries. Electrochemical and Solid-State Letters, 2005, 8, A159.	2.2	102
107	Oxygen Deficiency as the Origin of the Disparate Behavior of LiM[sub 0.5]Mn[sub 1.5]O[sub 4] (M = Ni, Cu) Nanospinels in Lithium Cells. Journal of the Electrochemical Society, 2005, 152, A552.	2.9	50
108	Adverse Effect of Ag Treatment on the Electrochemical Performance of the 5 V Nanometric Spinel LiNi[sub 0.5]Mn[sub 1.5]O[sub 4] in Lithium Cells. Electrochemical and Solid-State Letters, 2005, 8, A303.	2.2	24

#	Article	IF	CITATIONS
109	Synthesis, Characterization, and Electrochemical Properties of Nanocrystalline Silver Thin Films Obtained by Spray Pyrolysis. Journal of the Electrochemical Society, 2004, 151, A151.	2.9	51
110	Influence of the mechanical treatment on the structure and the thermal stability of alkaline-earth carbonates. Journal of Materials Science, 2004, 39, 5189-5193.	3.7	15
111	Reaction of SbPO4 with lithium in non-aqueous electrochemical cells: preliminary study and evaluation of its electrochemical performance in anodes for lithium ion batteries. Journal of Solid State Chemistry, 2004, 177, 2920-2927.	2.9	24
112	Nanostructured CuO thin film electrodes prepared by spray pyrolysis: a simple method for enhancing the electrochemical performance of CuO in lithium cells. Electrochimica Acta, 2004, 49, 4589-4597.	5.2	189
113	Thin electrodes based on rolled Pb–Sn–Ca grids for VRLA batteries. Journal of Power Sources, 2004, 125, 246-255.	7.8	3
114	Enhancing the electrochemical properties of LT-LiCoO2 in lithium cells by doping with Mn. Journal of Power Sources, 2004, 128, 286-291.	7.8	26
115	lon-exchange properties of P2-NaxMnO2: evidence of the retention of the layer structure based on chemical reactivity data and electrochemical measurements of lithium cells. Journal of Solid State Chemistry, 2003, 174, 365-371.	2.9	12
116	XRD, XPS and Sn NMR study of tin sulfides obtained by using chemical vapor transport methods. Journal of Solid State Chemistry, 2003, 175, 359-365.	2.9	84
117	Preparation and characterization of thin electrodes for lead–acid batteries. Journal of Power Sources, 2003, 113, 376-381.	7.8	6
118	Development of high power VRLA batteries using novel materials and processes. Journal of Power Sources, 2003, 116, 61-72.	7.8	9
119	Mechanochemical synthesis of Sn1 â^ xMoxO2anode materials for Li-ion batteries. Journal of Materials Chemistry, 2002, 12, 2979-2984.	6.7	48
120	Synthesis, characterization and comparative study of the electrochemical properties of doped lithium manganese spinels as cathodes for high voltage lithium batteries. Journal of Materials Chemistry, 2002, 12, 734-741.	6.7	35
121	Synthesis of LixMnOy·nH2O birnessite oxide by the hydrothermal method. Materials Letters, 2002, 56, 653-659.	2.6	12
122	Synthesis and characterization of high-temperature hexagonal P2-Na0.6 MnO2 and its electrochemical behaviour as cathode in sodium cells. Journal of Materials Chemistry, 2002, 12, 1142-1147.	6.7	330
123	Spray pyrolysis as a method for preparing PbO coatings amenable to use in lead-acid batteries. Journal of Power Sources, 2002, 108, 35-40.	7.8	30
124	Study of in situ adsorption and intercalation of cobaltocene into SnS2 single crystals by photoelectron spectroscopy. Surface Science, 2001, 477, L295-L300.	1.9	5
125	Antimony doping effect on the electrochemical behavior of SnO2 thin film electrodes. Journal of Power Sources, 2001, 97-98, 232-234.	7.8	72
126	Electrochemical properties of lead oxide films obtained by spray pyrolysis as negative electrodes for lithium secondary batteries. Electrochimica Acta, 2001, 46, 2939-2948.	5.2	109

#	Article	IF	CITATIONS
127	Synthesis and Characterization of Diamine Intercalation Compounds of SnS2 Single Crystals. Journal of Solid State Chemistry, 2000, 150, 391-398.	2.9	15
128	Cation-deficient MoySnxO2 oxides as anodes for lithium ion batteries. Electrochimica Acta, 2000, 46, 83-89.	5.2	18
129	Influence of Al, In, Cu, Fe and Sn dopants in the microstructure of zinc oxide thin films obtained by spray pyrolysis. Thin Solid Films, 2000, 366, 16-27.	1.8	131
130	Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour. Thin Solid Films, 2000, 373, 137-140.	1.8	288
131	Use of amorphous tin-oxide films obtained by spray pyrolysis as electrodes in lithium batteries. Journal of Power Sources, 2000, 87, 106-111.	7.8	44
132	X-ray Diffraction, XPS, and Magnetic Properties of Lanthanide-Based Misfit-Layered Sulfides Intercalated with Cobaltocene. Chemistry of Materials, 2000, 12, 3792-3797.	6.7	13
133	Electrochemical Cointercalation of Propylene Carbonate with Alkali Metals in SnS2 Single Crystals. Journal of the Electrochemical Society, 1999, 146, 657-662.	2.9	11
134	Electrochemical behaviour of SnO2 doped with boron and indium in anodes for lithium secondary batteries. Solid State Ionics, 1999, 126, 219-226.	2.7	29
135	Improving the Electrochemical Performance of SnO2 Cathodes in Lithium Secondary Batteries by Doping with Mo. Journal of the Electrochemical Society, 1999, 146, 1640-1642.	2.9	54
136	Ultra-high vacuum deposition of Na on SnS2 in single crystal and powder forms: evidence of a decomposition reaction. Surface Science, 1999, 426, 259-267.	1.9	8
137	Synthesis and Characterization of Poly(ethylene Oxide) Nanocomposites of Misfit Layer Chalcogenides. Journal of Solid State Chemistry, 1998, 141, 323-329.	2.9	15
138	Sodium Intercalation into (PbS)1.18(TiS2)2Misfit Layer Compound. Journal of Solid State Chemistry, 1996, 124, 238-243.	2.9	7
139	Microstructure and intercalation properties of petrol cokes obtained at 1400°C. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 39, 216-223.	3.5	13
140	New tin-containing spinel sulfide electrodes for ambient temperature rocking chair cells. Journal of Power Sources, 1996, 62, 101-105.	7.8	27
141	Raman study and lattice dynamics calculation of the misfit layer compound (PbS)1.12VS2. Journal of Raman Spectroscopy, 1995, 26, 675-681.	2.5	4
142	125Te Mössbauer spectroscopic study of layered transition metal ditellurides with interlayer communication. Solid State Communications, 1995, 96, 911-914.	1.9	1
143	Chemically deintercalated cathode materials for lithium cells. Ionics, 1995, 1, 246-250.	2.4	2

144 Structure and Electrochemical Properties of Lilâ \in ‰â[°]â \in ‰x â \in ‰(â \in ‰Ni y Colâ \in ‰â[°]â \in ‰y â \in ‰)â \in ‰lâ \in ‰1â \in ‰+â \in ‰x â \in ‰Coâ \in ‰2 at OA°C. Journal of the Electrochemical Society, 1995, 142, 3997-4005.

#	Article	IF	CITATIONS
145	Diffraction and XPS Studies of Misfit Layer Chalcogenides Intercalated with Cobaltocene. Chemistry of Materials, 1995, 7, 1576-1582.	6.7	50
146	Electrochemical lithium insertion into In16Sn4S32 and Cu4In2OS32 spinel sulphides. Journal of Alloys and Compounds, 1995, 217, 176-180.	5.5	19
147	Acid-Delithiated Li1-x(NiyCo1-y)1+xO2 as Insertion Electrodes in Lithium Batteries. Journal of Solid State Chemistry, 1994, 113, 182-192.	2.9	25
148	Cobaltocene intercalation into misfit layer chalcogenides. Journal of the Chemical Society Chemical Communications, 1994, , 1081-1082.	2.0	5
149	Metal—support interaction effects in the liquid-phase selective hydrogenation of 1,4-butynediol with nickel catalysts supported on AlPO4 and on other conventional non-reducible compounds. Journal of Molecular Catalysis, 1993, 85, 305-325.	1.2	18
150	Thermal behaviour of chemically deintercalated Li1â^'1Ni1+xO2. Journal of Thermal Analysis, 1992, 38, 295-301.	0.6	17
151	Chromium substitution and crystallinity changes in ?-FeOOH. Journal of Materials Science, 1990, 25, 1813-1815.	3.7	5
152	Mn and Co substitution in ?-FeOOH and its decomposition products. Journal of Materials Science, 1990, 25, 5207-5214.	3.7	10
153	Relationships between the surface properties of γ-Fe2O3 and its cobalt-modified products. Journal of Colloid and Interface Science, 1990, 138, 565-579.	9.4	6
154	Preferential X-ray line Broadening and Thermal Behavior of gamma-Fe2O3. Journal of the American Ceramic Society, 1989, 72, 1244-1246.	3.8	13
155	Effect of preliminary mechanical activation on the behaviour of orthorhombic lead dioxide. Journal of Thermal Analysis, 1988, 34, 1421-1425.	0.6	2
156	Textural evolution of α-Fe2O3 obtained by thermal and mechanochemical decomposition of δ-FeOOH. Journal of Colloid and Interface Science, 1988, 122, 507-513.	9.4	7
157	Synthesis and alteration of ?-LiFeO2 by mechanochemical processes. Journal of Materials Science, 1988, 23, 2971-2974.	3.7	9
158	Tk and DTA stkdies of lithikm insertion transition metal compoknds. Materials Chemistry and Physics, 1988, 20, 145-152.	4.0	7
159	Mechanochemical transformation ofγ-FeOOH intoγ-Fe2O3 in the presence of Li2CO3. Journal of Materials Science Letters, 1987, 6, 223-224.	0.5	2
160	Limitations in the use of X-ray crystallite size in the determination of surface area in Co3O4. Journal of Colloid and Interface Science, 1987, 115, 274-276.	9.4	5
161	Texture, crystallinity, and catalytic properties of Co3O4 obtained by thermal and mechanical treatments. Journal of Colloid and Interface Science, 1986, 110, 172-180.	9.4	13
162	Changes in the kinetics of the vaterite-calcite transformation with temperature and sample crystallinity. Journal of Materials Science, 1986, 21, 947-952.	3.7	8

#	Article	IF	CITATIONS
163	X-ray line broadening in haematite derived froml̂ -FeOOH by thermal and mechanical procedures. Journal of Materials Science Letters, 1986, 5, 1295-1297.	0.5	13
164	Changes in crystallinity and thermal effects in ground vaterite. Journal of Materials Science, 1985, 20, 941-946.	3.7	11
165	Effect of grinding on the kinetics of the transformation vaterite-calcite. Thermochimica Acta, 1985, 92, 211-214.	2.7	1
166	Thermal behaviour of synthetic akaganeite under different experimental conditions. Thermochimica Acta, 1985, 92, 525-528.	2.7	8
167	Textural evolution of synthetic γ-FeOOH during thermal treatment by differential scanning calorimetry. Journal of Colloid and Interface Science, 1984, 101, 392-400.	9.4	39
168	Kinetic study of the thermal decomposition of cobalt(III) oxyhydroxide. Journal of Thermal Analysis, 1984, 29, 479-489.	0.6	11
169	Kinetic study of the thermal decomposition of cobalt(III) oxyhydroxide. Journal of Thermal Analysis, 1984, 29, 491-501.	0.6	7
170	Critical examination of the DTA techniques used to study the kinetics of solid-state transformations. Journal of Materials Science, 1983, 18, 2117-2125.	3.7	8
171	The applicability of DTA and DSC techniques to the study of the kinetics of phase transition reactions. Journal of Thermal Analysis, 1982, 24, 23-34.	0.6	10
172	Grinding-induced structural transformations in CaCO3. Journal of Colloid and Interface Science, 1981, 81, 500-510.	9.4	22
173	Alteration of kinetics and thermodynamics of thermal decomposition of alkaline-earth carbonates induced by grinding. Thermochimica Acta, 1979, 32, 99-110.	2.7	21
174	Some observations on the thermal behaviour of lead monoxide, PbO. Thermochimica Acta, 1979, 33, 395-400.	2.7	1
175	On the estimation of the reaction mechanisms of thermal decomposition of solids from the fraction reacted at the maximum reaction rate. Thermochimica Acta, 1978, 25, 257-260.	2.7	11
176	Determination of equilibrium constants of solid thermal decomposition reactions by thermogravimetry. Thermochimica Acta, 1978, 23, 257-261.	2.7	1
177	Computer kinetic analysis of simultaneously obtained TG and DTG curves. Journal of Theoretical Biology, 1978, 14, 221-228.	1.7	58
178	Thermal decomposition reactions of solids controlled by diffusion and phase-boundary processes: possible misinterpretation of the mechanism from thermogravimetric data. Thermochimica Acta, 1977, 19, 305-317.	2.7	95
179	On the thermal decomposition mechanism for dehydroxylation of alkaline-earth hydroxides. Journal of Theoretical Biology, 1976, 10, 103-110.	1.7	18
180	Defects of thermogravimetric analysis for discerning between first order reactions and those taking place through the Avrami-Erofeev's mechanism. Thermochimica Acta, 1976, 16, 382-387.	2.7	84

#	Article	IF	CITATIONS
181	Application of programmed temperature decomposition to the study of solid decomposition reactions taking place through the prout and tompkins mechanism. Thermochimica Acta, 1975, 12, 337-342.	2.7	20