Paula Serras Malillos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2176126/publications.pdf

Version: 2024-02-01

686830 996533 4,080 17 13 15 citations h-index g-index papers 17 17 17 5577 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The power flow and the wave energy flux at an operational wave farm: Findings from Mutriku, Bay of Biscay. Ocean Engineering, 2021, 227, 108654.	1.9	9
2	On the impact of long-term wave trends on the geometry optimisation of oscillating water column wave energy converters. Energy, 2020, 206, 118146.	4.5	24
3	INTRODUCING SUSTAINABILITY AND THE AGENDA 2030 IN ENGINEERING DEGREES THROUGH THE RESEARCH BASED LEARNING METHODOLOGY. , 2020, , .		0
4	Combining random forests and physics-based models to forecast the electricity generated by ocean waves: A case study of the Mutriku wave farm. Ocean Engineering, 2019, 189, 106314.	1.9	28
5	Electricity production, capacity factor, and plant efficiency index at the Mutriku wave farm (2014–2016). Ocean Engineering, 2018, 147, 20-29.	1.9	87
6	Waste Biomass as <i>in Situ</i> Carbon Source for Sodium Vanadium Fluorophosphate/C Cathodes for Na-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 16386-16398.	3.2	10
7	Vanadyl-type defects in Tavorite-like NaVPO ₄ F: from the average long range structure to local environments. Journal of Materials Chemistry A, 2017, 5, 25044-25055.	5.2	32
8	High-Voltage Cathodes for Na-Ion Batteries: Sodium– Vanadium Fluorophosphates. , 2016, , .		0
9	Structural evolution of mixed valent (V ³⁺ /V ⁴⁺) and V ⁴⁺ sodium vanadium fluorophosphates as cathodes in sodium-ion batteries: comparisons, overcharging and mid-term cycling. Journal of Materials Chemistry A, 2015, 3, 23017-23027.	5.2	36
10	Sodium Distribution and Reaction Mechanisms of a Na ₃ V ₂ O ₂ (PO ₄) ₂ F Electrode during Use in a Sodium-Ion Battery. Chemistry of Materials, 2014, 26, 3391-3402.	3.2	112
11	Structural evolution of high energy density V ³⁺ /V ⁴⁺ mixed valent Na ₃ V ₂ 63e^2x (<i>x</i> = 0.8) sodium vanadium fluorophosphate using <i>in situ</i> synchrotron X-ray powder diffraction. Journal of Materials Chemistry A, 2014, 2, 7766-7779.	5.2	57
12	Enhanced electrochemical performance of vanadyl (IV) Na3(VO)2(PO4)2F by ex-situ carbon coating. Electrochemistry Communications, 2013, 34, 344-347.	2.3	48
13	Electrochemical performance of mixed valence Na3V2O2x(PO4)2F3â^2x/C as cathode for sodium-ion batteries. Journal of Power Sources, 2013, 241, 56-60.	4.0	84
14	Electrochemical Na Extraction/Insertion of Na ₃ V ₂ General Na Extraction/Insertion of Na ₃ V ₂ F _{3–2<i>x</i>Chemistry of Materials, 2013, 25, 4917-4925.}	<b sub>.	112
15	High voltage cathode materials for Na-ion batteries of general formula Na3V2O2x(PO4)2F3â^22x. Journal of Materials Chemistry, 2012, 22, 22301.	6.7	174
16	Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy and Environmental Science, 2012, 5, 5884.	15.6	3,078
17	Crystal chemistry of Na insertion/deinsertion in FePO4–NaFePO4. Journal of Materials Chemistry, 2012, 22, 17421.	6.7	189