Marlies E J Reinders

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2176029/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The RECOVAC Immune-response Study: The Immunogenicity, Tolerability, and Safety of COVID-19 Vaccination in Patients With Chronic Kidney Disease, on Dialysis, or Living With a Kidney Transplant. Transplantation, 2022, 106, 821-834.	1.0	127
2	Relinquishing Anonymity in Living Donor Kidney Transplantation: Lessons Learned From the UK Policy for Anonymous Donors. Transplant International, 2022, 36, 10091.	1.6	2
3	Clinical and Molecular Profiling to Develop a Potential Prediction Model for the Response to Alemtuzumab Therapy for Acute Kidney Transplant Rejection. Clinical Pharmacology and Therapeutics, 2022, 111, 1155-1164.	4.7	2
4	Implementation of molecular matching in transplantation requires further characterization of both immunogenicity and antigenicity of individual HLA epitopes. Human Immunology, 2022, 83, 256-263.	2.4	14
5	Design and First Impressions of a Small Private Online Course in Clinical Workplace Learning: Questionnaire and Interview Study. JMIR Medical Education, 2022, 8, e29624.	2.6	4
6	How to Make Sense out of 75,000 Mesenchymal Stromal Cell Publications?. Cells, 2022, 11, 1419.	4.1	5
7	MO337: Higher Antibody Response After 2 Vaccinations With MRNA-1273 as Compared With BNT162B2 and AZD1222 in High-Risk Kidney Patients. Nephrology Dialysis Transplantation, 2022, 37, .	0.7	0
8	MO184: Development and Validation of a Multivariable Prediction Model for Nonseroconversion after SARS-COV-2 Vaccination in Kidney Transplant Recipients. Nephrology Dialysis Transplantation, 2022, 37, .	0.7	1
9	Development and application of a massive open online course to deliver innovative transplant education. Transplant Immunology, 2021, 66, 101339.	1.2	7
10	Cellular therapies in organ transplantation. Transplant International, 2021, 34, 233-244.	1.6	11
11	Development of a Clinical Teaching Unit in Internal Medicine to Promote Interprofessional and Multidisciplinary Learning: A Practical Intervention. Teaching and Learning in Medicine, 2021, 33, 78-88.	2.1	8
12	Autologous bone marrow-derived mesenchymal stromal cell therapy with early tacrolimus withdrawal: The randomized prospective, single-center, open-label TRITON study. American Journal of Transplantation, 2021, 21, 3055-3065.	4.7	25
13	Mesenchymal Stromal Cell Derived Membrane Particles Are Internalized by Macrophages and Endothelial Cells Through Receptor-Mediated Endocytosis and Phagocytosis. Frontiers in Immunology, 2021, 12, 651109.	4.8	9
14	Single antigen testing to reduce early antibody-mediated rejection risk in female recipients of a spousal donor kidney. Transplant Immunology, 2021, 67, 101407.	1.2	0
15	Identification of predictive markers for the generation of well-differentiated human induced pluripotent stem cell-derived kidney organoids. Stem Cells and Development, 2021, 30, 1103-1114.	2.1	2
16	Proteomic Analysis of Mesenchymal Stromal Cell-Derived Extracellular Vesicles and Reconstructed Membrane Particles. International Journal of Molecular Sciences, 2021, 22, 12935.	4.1	5
17	Cardiovascular Effects of Autologous Bone Marrow–Derived Mesenchymal Stromal Cell Therapy With Early Tacrolimus Withdrawal in Renal Transplant Recipients: An Analysis of the Randomized TRITON Study. Journal of the American Heart Association, 2021, 10, e023300.	3.7	3
18	Twelve tips for integrating massive open online course content into classroom teaching. Medical Teacher, 2020, 42, 393-397.	1.8	49

#	Article	IF	CITATIONS
19	Instructional design quality in medical Massive Open Online Courses for integration into campus education. Medical Teacher, 2020, 42, 156-163.	1.8	33
20	Results of an explorative clinical evaluation suggest immediate and persistent post-reperfusion metabolic paralysis drives kidney ischemia reperfusion injury. Kidney International, 2020, 98, 1476-1488.	5.2	20
21	Circulating Long Noncoding RNA LNC-EPHA6 Associates with Acute Rejection after Kidney Transplantation. International Journal of Molecular Sciences, 2020, 21, 5616.	4.1	8
22	Skin disorders indicating peripheral arterial occlusive disease and chronic venous insufficiency in organ transplant recipients. Journal of Diabetes and Its Complications, 2020, 34, 107623.	2.3	1
23	Treating Ischemically Damaged Porcine Kidneys with Human Bone Marrow- and Adipose Tissue-Derived Mesenchymal Stromal Cells During Ex Vivo Normothermic Machine Perfusion. Stem Cells and Development, 2020, 29, 1320-1330.	2.1	27
24	Diabetic nephropathy alters circulating long noncoding RNA levels that normalize following simultaneous pancreas–kidney transplantation. American Journal of Transplantation, 2020, 20, 3451-3461.	4.7	10
25	A nationwide evaluation of deceased donor kidney transplantation indicates detrimental consequences of early graft loss. Kidney International, 2020, 97, 1243-1252.	5.2	10
26	The emergence of regenerative medicine in organ transplantation: 1st European Cell Therapy and Organ Regeneration Section meeting. Transplant International, 2020, 33, 833-840.	1.6	15
27	Severe COVID-19 in a renal transplant recipient: A focus on pharmacokinetics. American Journal of Transplantation, 2020, 20, 1896-1901.	4.7	51
28	Human leukocyte antigen selected allogeneic mesenchymal stromal cell therapy in renal transplantation: The Neptune study, a phase I single-center study. American Journal of Transplantation, 2020, 20, 2905-2915.	4.7	34
29	Uncovering motivation and self-regulated learning skills in integrated medical MOOC learning: a mixed methods research protocol. BMJ Open, 2020, 10, e038235.	1.9	9
30	Topics, Delivery Modes, and Social-Epistemological Dimensions of Web-Based Information for Patients Undergoing Renal Transplant and Living Donors During the COVID-19 Pandemic: Content Analysis. Journal of Medical Internet Research, 2020, 22, e22068.	4.3	8
31	Infusing Mesenchymal Stromal Cells into Porcine Kidneys during Normothermic Machine Perfusion: Intact MSCs Can Be Traced and Localised to Glomeruli. International Journal of Molecular Sciences, 2019, 20, 3607.	4.1	48
32	Diabetic Nephropathy Alters the Distribution of Circulating Angiogenic MicroRNAs Among Extracellular Vesicles, HDL, and Ago-2. Diabetes, 2019, 68, 2287-2300.	0.6	37
33	Teaching modes and social-epistemological dimensions in medical Massive Open Online Courses: Lessons for integration in campus education. Medical Teacher, 2019, 41, 917-926.	1.8	20
34	An Easy and Sensitive Method to Profile the Antibody Specificities of HLA–specific Memory B Cells. Transplantation, 2019, 103, 716-723.	1.0	34
35	Presence of intragraft B cells during acute renal allograft rejection is accompanied by changes in peripheral blood B cell subsets. Clinical and Experimental Immunology, 2019, 196, 403-414.	2.6	10
36	Systemic features of retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations: a monogenic small vessel disease. Journal of Internal Medicine, 2019, 285, 317-332.	6.0	29

MARLIES E J REINDERS

#	Article	IF	CITATIONS
37	A pharmacological rationale for improved everolimus dosing in oncology and transplant patients. British Journal of Clinical Pharmacology, 2018, 84, 1575-1586.	2.4	12
38	Introducing the innovative technique of 360° virtual reality in kidney transplant education. Transplant Immunology, 2018, 49, 5-6.	1.2	12
39	Local delivery of liposomal prednisolone leads to an anti-inflammatory profile in renal ischaemia–reperfusion injury in the rat. Nephrology Dialysis Transplantation, 2018, 33, 44-53.	0.7	26
40	Mesenchymal Stromal Cell Therapy for Solid Organ Transplantation. Transplantation, 2018, 102, 35-43.	1.0	47
41	Early Steroid Withdrawal Compared With Standard Immunosuppression in Kidney Transplantation - Interim Analysis of the Amsterdam-Leiden-Groningen Randomized Controlled Trial. Transplantation Direct, 2018, 4, e354.	1.6	9
42	Dutch Law Approves Opt-out System. Transplantation, 2018, 102, 1202-1204.	1.0	3
43	Twelve tips for developing and delivering a massive open online course in medical education. Medical Teacher, 2017, 39, 691-696.	1.8	40
44	Kidney injury molecule-1 staining in renal allograft biopsies 10 days after transplantation is inversely correlated with functioning proximal tubular epithelial cells. Nephrology Dialysis Transplantation, 2017, 32, 2132-2141.	0.7	18
45	A Novel Clinical Grade Isolation Method for Human Kidney Perivascular Stromal Cells. Journal of Visualized Experiments, 2017, , .	0.3	3
46	Acute Rejection After Kidney Transplantation Associates With Circulating MicroRNAs and Vascular Injury. Transplantation Direct, 2017, 3, e174.	1.6	25
47	Circulating Endothelial Markers in Retinal Vasculopathy With Cerebral Leukoencephalopathy and Systemic Manifestations. Stroke, 2017, 48, 3301-3307.	2.0	13
48	Alemtuzumab Induction and Delayed Acute Rejection in Steroid-Free Simultaneous Pancreas-Kidney Transplant Recipients. Transplantation Direct, 2017, 3, e124.	1.6	10
49	Clinical-Grade Isolated Human Kidney Perivascular Stromal Cells as an Organotypic Cell Source for Kidney Regenerative Medicine. Stem Cells Translational Medicine, 2017, 6, 405-418.	3.3	25
50	The human kidney capsule contains a functionally distinct mesenchymal stromal cell population. PLoS ONE, 2017, 12, e0187118.	2.5	9
51	TO009TARGETED DELIVERY OF LIPOSOMAL PREDNISOLONE AFTER RENAL ISCHEMIA REPERFUSION INJURY IN THE RAT. Nephrology Dialysis Transplantation, 2016, 31, i63-i64.	0.7	0
52	The Dutch Transplantation in Vasculitis (DUTRAVAS) Study. Transplantation, 2016, 100, 916-924.	1.0	29
53	Innovating clinical kidney transplant education by a massive open online course. Transplant Immunology, 2016, 38, 1-2.	1.2	11
54	Innovations in Clinical Kidney Transplant Education by a Massive Open Online Course. Medical Science Educator, 2016, 26, 11-12.	1.5	2

MARLIES E J REINDERS

#	Article	IF	CITATIONS
55	Mesenchymal stromal cells in clinical kidney transplantation. Current Opinion in Organ Transplantation, 2016, 21, 550-558.	1.6	5
56	Simultaneous pancreas–kidney transplantation in patients with type 1 diabetes reverses elevated MBL levels in association with MBL2 genotype and VECF expression. Diabetologia, 2016, 59, 853-858.	6.3	13
57	The MEST score provides earlier risk prediction in lgA nephropathy. Kidney International, 2016, 89, 167-175.	5.2	190
58	Safety of allogeneic bone marrow derived mesenchymal stromal cell therapy in renal transplant recipients: the neptune study. Journal of Translational Medicine, 2015, 13, 344.	4.4	59
59	Incidence of Malignancies in Patients With Antineutrophil Cytoplasmic Antibody–Associated Vasculitis Diagnosed Between 1991 and 2013. Arthritis and Rheumatology, 2015, 67, 3270-3278.	5.6	41
60	Early Systemic Microvascular Damage in Pigs with Atherogenic Diabetes Mellitus Coincides with Renal Angiopoietin Dysbalance. PLoS ONE, 2015, 10, e0121555.	2.5	16
61	Circulating MicroRNAs Associate With Diabetic Nephropathy and Systemic Microvascular Damage and Normalize After Simultaneous Pancreas–Kidney Transplantation. American Journal of Transplantation, 2015, 15, 1081-1090.	4.7	73
62	Autologous bone marrow derived mesenchymal stromal cell therapy in combination with everolimus to preserve renal structure and function in renal transplant recipients. Journal of Translational Medicine, 2014, 12, 331.	4.4	41
63	Mesenchymal stromal cells to prevent fibrosis in kidney transplantation. Current Opinion in Organ Transplantation, 2014, 19, 54-59.	1.6	20
64	Hematopoietic MicroRNA-126 Protects against Renal Ischemia/Reperfusion Injury by Promoting Vascular Integrity. Journal of the American Society of Nephrology: JASN, 2014, 25, 1710-1722.	6.1	99
65	Association of Kidney Function with Changes in the Endothelial Surface Layer. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 698-704.	4.5	115
66	Clinical Translation of Multipotent Mesenchymal Stromal Cells in Transplantation. Seminars in Nephrology, 2014, 34, 351-364.	1.6	7
67	Mesenchymal Stromal Cell Therapy for Cardio Renal Disorders. Current Pharmaceutical Design, 2014, 20, 2412-2429.	1.9	18
68	Interleukin-9 release from human kidney grafts and its potential protective role in renal ischemia/reperfusion injury. Inflammation Research, 2013, 62, 53-59.	4.0	13
69	Bone marrow-derived mesenchymal stromal cells from patients with end-stage renal disease are suitable for autologous therapy. Cytotherapy, 2013, 15, 663-672.	0.7	43
70	Pre-existing endothelial cell activation predicts vasoplegia after mitral valve surgeryâ€. Interactive Cardiovascular and Thoracic Surgery, 2013, 17, 523-530.	1.1	18
71	Renal ischemia-reperfusion induces a dysbalance of angiopoietins, accompanied by proliferation of pericytes and fibrosis. American Journal of Physiology - Renal Physiology, 2013, 305, F901-F910.	2.7	43
72	The role of mesenchymal stromal cells in chronic transplant rejection after solid organ transplantation. Current Opinion in Organ Transplantation, 2013, 18, 44-50.	1.6	19

MARLIES E J REINDERS

#	Article	IF	CITATIONS
73	Autologous Bone Marrow-Derived Mesenchymal Stromal Cells for the Treatment of Allograft Rejection After Renal Transplantation: Results of a Phase I Study. Stem Cells Translational Medicine, 2013, 2, 107-111.	3.3	277
74	Donor preâ€treatment in clinical kidney transplantation: a critical appraisal. Clinical Transplantation, 2013, 27, 799-808.	1.6	15
75	Renal Ischemia-Reperfusion Induces Release of Angiopoietin-2 From Human Grafts of Living and Deceased Donors. Transplantation, 2013, 96, 282-289.	1.0	14
76	Acute But Transient Release of Terminal Complement Complex After Reperfusion in Clinical Kidney Transplantation. Transplantation, 2013, 95, 816-820.	1.0	67
77	Human Bone Marrow- and Adipose Tissue-derived Mesenchymal Stromal Cells are Immunosuppressive In vitro and in a Humanized Allograft Rejection Model. Journal of Stem Cell Research & Therapy, 2013, Suppl 6, 20780.	0.3	42
78	Human Allogeneic Bone Marrow and Adipose Tissue Derived Mesenchymal Stromal Cells Induce CD8+ Cytotoxic T Cell Reactivity. Journal of Stem Cell Research & Therapy, 2013, 3, 004.	0.3	19
79	Mesenchymal stromal cells in renal ischemia/reperfusion injury. Frontiers in Immunology, 2012, 3, 162.	4.8	26
80	Mesenchymal stem cells derived from adipose tissue are not affected by renal disease. Kidney International, 2012, 82, 748-758.	5.2	54
81	Mesenchymal stromal cell function is not affected by drugs used in the treatment of inflammatory bowel disease. Cytotherapy, 2011, 13, 1066-1073.	0.7	45
82	Dexamethasone increases ROS production and T cell suppressive capacity by anti-inflammatory macrophages. Molecular Immunology, 2011, 49, 549-557.	2.2	65
83	Advancement of Mesenchymal Stem Cell Therapy in Solid Organ Transplantation (MISOT). Transplantation, 2010, 90, 124-126.	1.0	66
84	Effect of vascular endothelial growth factor and its receptor KDR on the transendothelial migration and local trafficking of human T cells in vitro and in vivo. Blood, 2010, 116, 1980-1989.	1.4	25
85	Multipotent mesenchymal stromal cell therapy in renal disease and kidney transplantation. Nephrology Dialysis Transplantation, 2010, 25, 17-24.	0.7	83
86	Adipose tissue-derived stem cells: can impure cell preparations give pure results?. Nephrology Dialysis Transplantation, 2010, 25, 3805-3807.	0.7	7
87	Vascular Endothelial Growth Factor-Induced Signaling Pathways in Endothelial Cells That Mediate Overexpression of the Chemokine IFN-1 ³ -Inducible Protein of 10 kDa In Vitro and In Vivo. Journal of Immunology, 2006, 176, 3098-3107.	0.8	74
88	Angiogenesis and Endothelial Cell Repair in Renal Disease and Allograft Rejection. Journal of the American Society of Nephrology: JASN, 2006, 17, 932-942.	6.1	136
89	Proangiogenic Function of CD40 Ligand-CD40 Interactions. Journal of Immunology, 2003, 171, 1534-1541.	0.8	71
90	EXPRESSION PATTERNS OF VASCULAR ENDOTHELIAL GROWTH FACTOR IN HUMAN CARDIAC ALLOGRAFTS. Transplantation, 2003, 76, 224-230.	1.0	60

#	Article	IF	CITATIONS
91	Proinflammatory functions of vascular endothelial growth factor in alloimmunity. Journal of Clinical Investigation, 2003, 112, 1655-1665.	8.2	203
92	The role of the graft endothelium in transplant rejection: Evidence that endothelial activation may serve as a clinical marker for the development of chronic rejection. Pediatric Transplantation, 2000, 4, 252-260.	1.0	85
93	Ligation of CD40 induces the expression of vascular endothelial growth factor by endothelial cells and monocytes and promotes angiogenesis in vivo. Blood, 2000, 96, 3801-3808.	1.4	180
94	Ligation of CD40 induces the expression of vascular endothelial growth factor by endothelial cells and monocytes and promotes angiogenesis in vivo. Blood, 2000, 96, 3801-3808.	1.4	11
95	Angiogenesis and Allograft Rejection. Graft: Organ and Cell Transplantation, 0, 5, 96-101.	0.0	7