List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2175602/publications.pdf Version: 2024-02-01

SVEN KOTLADSKI

#	Article	IF	CITATIONS
1	EURO-CORDEX: new high-resolution climate change projections for European impact research. Regional Environmental Change, 2014, 14, 563-578.	1.4	1,758
2	21st century climate change in the European Alps—A review. Science of the Total Environment, 2014, 493, 1138-1151.	3.9	746
3	Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geoscientific Model Development, 2014, 7, 1297-1333.	1.3	711
4	The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Climate Dynamics, 2013, 41, 2555-2575.	1.7	290
5	Quantifying uncertainty sources in an ensemble of hydrological climateâ€impact projections. Water Resources Research, 2013, 49, 1523-1536.	1.7	284
6	Regional climate downscaling over Europe: perspectives from the EURO-CORDEX community. Regional Environmental Change, 2020, 20, 1.	1.4	227
7	<scp>VALUE</scp> : A framework to validate downscaling approaches for climate change studies. Earth's Future, 2015, 3, 1-14.	2.4	167
8	An intercomparison of a large ensemble of statistical downscaling methods over Europe: Results from the VALUE perfect predictor crossâ€validation experiment. International Journal of Climatology, 2019, 39, 3750-3785.	1.5	164
9	Climate Changes and Their Elevational Patterns in the Mountains of the World. Reviews of Geophysics, 2022, 60, .	9.0	140
10	Overview of Existing Heat-Health Warning Systems in Europe. International Journal of Environmental Research and Public Health, 2019, 16, 2657.	1.2	124
11	Alpine snow cover in a changing climate: a regional climate model perspective. Climate Dynamics, 2013, 41, 735-754.	1.7	99
12	Observational uncertainty and regional climate model evaluation: A panâ€European perspective. International Journal of Climatology, 2019, 39, 3730-3749.	1.5	98
13	Spectral representation of the annual cycle in the climate change signal. Hydrology and Earth System Sciences, 2011, 15, 2777-2788.	1.9	92
14	Elevation gradients of European climate change in the regional climate model COSMO-CLM. Climatic Change, 2012, 112, 189-215.	1.7	91
15	Separating climate change signals into thermodynamic, lapse-rate and circulation effects: theory and application to the European summer climate. Climate Dynamics, 2017, 48, 3425-3440.	1.7	88
16	Observed snow depth trends in the European Alps: 1971 to 2019. Cryosphere, 2021, 15, 1343-1382.	1.5	87
17	Daily precipitation statistics in a EURO-CORDEX RCM ensemble: added value of raw and bias-corrected high-resolution simulations. Climate Dynamics, 2016, 47, 719-737.	1.7	85
18	Projected changes in surface solar radiation in CMIP5 global climate models and in EURO-CORDEX regional climate models for Europe. Climate Dynamics, 2017, 49, 2665-2683.	1.7	82

#	Article	IF	CITATIONS
19	Future snowfall in the Alps: projections based on the EURO-CORDEX regional climate models. Cryosphere, 2018, 12, 1-24.	1.5	75
20	<scp>Convection</scp> â€permitting modeling with regional climate models: Latest developments and next steps. Wiley Interdisciplinary Reviews: Climate Change, 2021, 12, e731.	3.6	74
21	Response of Karakoramâ€Himalayan glaciers to climate variability and climatic change: A regional climate model assessment. Geophysical Research Letters, 2015, 42, 1818-1825.	1.5	73
22	Does Quantile Mapping of Simulated Precipitation Correct for Biases in Transition Probabilities and Spell Lengths?. Journal of Climate, 2016, 29, 1605-1615.	1.2	71
23	Uncertainty in gridded precipitation products: Influence of station density, interpolation method and grid resolution. International Journal of Climatology, 2019, 39, 3717-3729.	1.5	71
24	Regional climate model simulations as input for hydrological applications: evaluation of uncertainties. Advances in Geosciences, 0, 5, 119-125.	12.0	69
25	Physical constraints for temperature biases in climate models. Geophysical Research Letters, 2013, 40, 4042-4047.	1.5	63
26	The elevation dependency of 21st century European climate change: an <scp>RCM</scp> ensemble perspective. International Journal of Climatology, 2015, 35, 3902-3920.	1.5	61
27	Exploring Perturbed Physics Ensembles in a Regional Climate Model. Journal of Climate, 2012, 25, 4582-4599.	1.2	52
28	Assessing distributionâ€based climate model bias correction methods over an alpine domain: added value and limitations. International Journal of Climatology, 2017, 37, 2633-2653.	1.5	47
29	An Occupational Heat–Health Warning System for Europe: The HEAT-SHIELD Platform. International Journal of Environmental Research and Public Health, 2019, 16, 2890.	1.2	46
30	Escalating environmental summer heat exposure—a future threat for the European workforce. Regional Environmental Change, 2020, 20, 1.	1.4	45
31	Robust climate scenarios for sites with sparse observations: a twoâ€step bias correction approach. International Journal of Climatology, 2016, 36, 1226-1243.	1.5	44
32	Snow cover sensitivity to horizontal resolution, parameterizations, and atmospheric forcing in a land surface model. Journal of Geophysical Research, 2011, 116, .	3.3	41
33	Regional climate change over Europe in COSMO-CLM: Influence of emission scenario and driving global model. Meteorologische Zeitschrift, 2016, 25, 121-136.	O.5	41
34	Representing glaciers in a regional climate model. Climate Dynamics, 2010, 34, 27-46.	1.7	39
35	A high resolution reference data set of German wind velocity 19512001 and comparison with regional climate model results. Meteorologische Zeitschrift, 2006, 15, 585-596.	0.5	37
36	Hydrological Climate-Impact Projections for the Rhine River: GCM–RCM Uncertainty and Separate Temperature and Precipitation Effects*. Journal of Hydrometeorology, 2014, 15, 697-713.	0.7	37

#	Article	IF	CITATIONS
37	Objective Calibration of Regional Climate Models: Application over Europe and North America. Journal of Climate, 2016, 29, 819-838.	1.2	35
38	The Alpine snow-albedo feedback in regional climate models. Climate Dynamics, 2017, 48, 1109-1124.	1.7	35
39	Forcing a Distributed Glacier Mass Balance Model with the Regional Climate Model REMO. Part I: Climate Model Evaluation. Journal of Climate, 2010, 23, 1589-1606.	1.2	34
40	Lack of Change in the Projected Frequency and Persistence of Atmospheric Circulation Types Over Central Europe. Geophysical Research Letters, 2020, 47, e2019GL086132.	1.5	34
41	Climate projections of a multivariate heat stress index: the role of downscaling and bias correction. Geoscientific Model Development, 2019, 12, 3419-3438.	1.3	33
42	Climate Model Biases and Modification of the Climate Change Signal by Intensity-Dependent Bias Correction. Journal of Climate, 2018, 31, 6591-6610.	1.2	32
43	Processâ€based evaluation of the VALUE perfect predictor experiment of statistical downscaling methods. International Journal of Climatology, 2019, 39, 3868-3893.	1.5	32
44	21st Century alpine climate change. Climate Dynamics, 2023, 60, 65-86.	1.7	29
45	Toward a definition of Essential Mountain Climate Variables. One Earth, 2021, 4, 805-827.	3.6	26
46	Semi-automated calibration method for modelling of mountain permafrost evolution in Switzerland. Cryosphere, 2016, 10, 2693-2719.	1.5	25
47	Projections of Alpine Snow-Cover in a High-Resolution Climate Simulation. Atmosphere, 2019, 10, 463.	1.0	24
48	The Elbe river flooding 2002 as seen by an extended regional climate model. Journal of Hydrology, 2012, 472-473, 169-183.	2.3	23
49	Forcing a Distributed Glacier Mass Balance Model with the Regional Climate Model REMO. Part II: Downscaling Strategy and Results for Two Swiss Glaciers. Journal of Climate, 2010, 23, 1607-1620.	1.2	22
50	The HEAT-SHIELD project — Perspectives from an inter-sectoral approach to occupational heat stress. Journal of Science and Medicine in Sport, 2021, 24, 747-755.	0.6	22
51	Vulnerability of ski tourism towards internal climate variability and climate change in the Swiss Alps. Science of the Total Environment, 2021, 784, 147054.	3.9	21
52	Evaluation of a dynamically downscaled atmospheric reanalyse in the prospect of forcing long term simulations of the ocean circulation in the Gulf of Lions. Ocean Modelling, 2009, 30, 270-286.	1.0	20
53	CH2018 – National climate scenarios for Switzerland: How to construct consistent multi-model projections from ensembles of opportunity. Climate Services, 2020, 20, 100196.	1.0	19
54	Heat Warnings in Switzerland: Reassessing the Choice of the Current Heat Stress Index. International Journal of Environmental Research and Public Health, 2019, 16, 2684.	1.2	13

#	Article	IF	CITATIONS
55	Importance of climate uncertainty for projections of forest ecosystem services. Regional Environmental Change, 2018, 18, 2145-2159.	1.4	12
56	Climate Scenarios for Switzerland CH2018 – Approach and Implications. Climate Services, 2022, 26, 100288.	1.0	12
57	Evaluating the added value of the new Swiss climate scenarios for hydrology: An example from the Thur catchment. Climate Services, 2019, 13, 1-13.	1.0	11
58	Trends and drivers of recent summer drying in Switzerland. Environmental Research Communications, 2022, 4, 025004.	0.9	10
59	Anthropogenic climate change versus internal climate variability: impacts on snow cover in the Swiss Alps. Cryosphere, 2020, 14, 2909-2924.	1.5	9
60	Climate Scenarios and Agricultural Indices: A Case Study for Switzerland. Atmosphere, 2020, 11, 535.	1.0	8
61	Urban multi-model climate projections of intense heat in Switzerland. Climate Services, 2021, 22, 100228.	1.0	7
62	The Swiss Alpine zero degree line: Methods, past evolution and sensitivities. International Journal of Climatology, 2021, 41, 6785-6804.	1.5	4