## Vesna Rastija

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2175481/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | How to face COVID-19: proposed treatments based on remdesivir and hydroxychloroquine in the presence of zinc sulfate. Docking/DFT/POM structural analysis. Journal of Biomolecular Structure and Dynamics, 2022, 40, 9429-9442.         | 3.5 | 20        |
| 2  | Effects of Defoliation Treatments of Babica Grape Variety(Vitis vinifera L.) on Volatile Compounds<br>Content in Wine. Molecules, 2022, 27, 714.                                                                                        | 3.8 | 0         |
| 3  | Effects of Coumarinyl Schiff Bases against Phytopathogenic Fungi, the Soil-Beneficial Bacteria and<br>Entomopathogenic Nematodes: Deeper Insight into the Mechanism of Action. Molecules, 2022, 27, 2196.                               | 3.8 | 8         |
| 4  | Polyphenols in Ruminant Nutrition and Their Effects on Reproduction. Antioxidants, 2022, 11, 970.                                                                                                                                       | 5.1 | 26        |
| 5  | Synthesis and antimicrobial activity evaluation of some new 7-substituted quinolin-8-ol derivatives:<br>POM analyses, docking, and identification of antibacterial pharmacophore sites. Chemical Data<br>Collections, 2021, 31, 100593. | 2.3 | 9         |
| 6  | Petra/Osiris/Molinspiration and Molecular Docking Analyses of 3-Hydroxy-Indolin-2-one Derivatives as<br>Potential Antiviral Agents. Current Computer-Aided Drug Design, 2021, 17, 123-133.                                              | 1.2 | 26        |
| 7  | Biological Activities Related to Plant Protection and Environmental Effects of Coumarin Derivatives:<br>QSAR and Molecular Docking Studies. International Journal of Molecular Sciences, 2021, 22, 7283.                                | 4.1 | 9         |
| 8  | Identification of Food Compounds as inhibitors of SARS-CoV-2 main protease using molecular docking<br>and molecular dynamics simulations. Chemometrics and Intelligent Laboratory Systems, 2021, 217,<br>104394.                        | 3.5 | 13        |
| 9  | Structure features of peptide-type SARS-CoV main protease inhibitors: Quantitative structure activity relationship study. Chemometrics and Intelligent Laboratory Systems, 2020, 206, 104172.                                           | 3.5 | 10        |
| 10 | Lipoxygenase Inhibition Activity of Coumarin Derivatives—QSAR and Molecular Docking Study.<br>Pharmaceuticals, 2020, 13, 154.                                                                                                           | 3.8 | 22        |
| 11 | DFT calculations and POM analyses of cytotoxicity of some flavonoids from aerial parts of Cupressus sempervirens: Docking and identification of pharmacophore sites. Bioorganic Chemistry, 2020, 100, 103850.                           | 4.1 | 16        |
| 12 | Recent Advances in Discovery of New Tyrosine Kinase Inhibitors Using Computational Methods.<br>Proceedings (mdpi), 2019, 22, .                                                                                                          | 0.2 | 0         |
| 13 | Identification of prodigious and under-privileged structural features for RG7834 analogs as Hepatitis<br>B virus expression inhibitor. Medicinal Chemistry Research, 2019, 28, 2270-2278.                                               | 2.4 | 3         |
| 14 | Synthesis, Tyrosinase Inhibiting Activity and Molecular Docking of Fluorinated Pyrazole Aldehydes as<br>Phosphodiesterase Inhibitors. Applied Sciences (Switzerland), 2019, 9, 1704.                                                    | 2.5 | 3         |
| 15 | Investigation of the structural and physicochemical requirements ofquinoline-arylamidine hybrids<br>for the growth inhibition of K562 and Rajileukemia cells. Turkish Journal of Chemistry, 2019, 43,<br>251-265.                       | 1.2 | 4         |
| 16 | Effects of early leaf removal on volatile compounds concentrations in Cabernet Sauvignon wines<br>from the llok vineyards. Poljoprivreda, 2018, 24, 10-17.                                                                              | 0.5 | 4         |
| 17 | Environmentally Friendly Approach to Knoevenagel Condensation of Rhodanine in Choline Chloride:<br>Urea Deep Eutectic Solvent and QSAR Studies on Their Antioxidant Activity. Molecules, 2018, 23, 1897.<br>                            | 3.8 | 21        |
| 18 | QSAR Analysis for Antioxidant Activity of Dipicolinic Acid Derivatives. Combinatorial Chemistry and High Throughput Screening, 2018, 21, 204-214.                                                                                       | 1.1 | 10        |

Vesna Rastija

| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Effects of early leaf removal on grape yield, chemical characteristics, and antioxidant activity of<br>grape variety Cabernet Sauvignon and wine from eastern Croatia. Acta Agriculturae Scandinavica -<br>Section B Soil and Plant Science, 2017, 67, 705-711. | 0.6 | 10        |
| 20 | Antitumor activity of 3,4-ethylenedioxythiophene derivatives and quantitative structure-activity relationship analysis. Journal of Molecular Structure, 2017, 1133, 66-73.                                                                                      | 3.6 | 12        |
| 21 | Deep Eutectic Solvents as Convenient Media for Synthesis of Novel Coumarinyl Schiff Bases and Their<br>QSAR Studies. Molecules, 2017, 22, 1482.                                                                                                                 | 3.8 | 19        |
| 22 | Quantitative structure–activity relationships (QSARs) and pharmacophore modeling for human<br>African trypanosomiasis (HAT) activity of pyridyl benzamides and 3-(oxazolo[4,5-b]pyridin-2-yl)anilides.<br>Medicinal Chemistry Research, 2016, 25, 2324-2334.    | 2.4 | 15        |
| 23 | QSAR analysis of antitumor activities of 3,4-ethylenedioxythiphene derivatives. AIP Conference<br>Proceedings, 2015, , .                                                                                                                                        | 0.4 | 0         |
| 24 | Effect of information leakage and method of splitting (rational and random) on external predictive ability and behavior of different statistical parameters of QSAR model. Medicinal Chemistry Research, 2015, 24, 1241-1264.                                   | 2.4 | 50        |
| 25 | Does tautomerism influence the outcome of QSAR modeling?. Medicinal Chemistry Research, 2014, 23, 1742-1757.                                                                                                                                                    | 2.4 | 27        |
| 26 | QSAR of Antitrypanosomal Activities of Polyphenols and their Analogues Using Multiple Linear<br>Regression and Artificial Neural Networks. Combinatorial Chemistry and High Throughput Screening,<br>2014, 17, 709-717.                                         | 1.1 | 6         |
| 27 | Integrating GUSAR and QSAR analyses for antimalarial activity of synthetic prodiginines against multi<br>drug resistant strain. Medicinal Chemistry Research, 2013, 22, 2284-2292.                                                                              | 2.4 | 28        |
| 28 | Two-dimensional quantitative structure–activity relationship study on polyphenols as inhibitors of<br>α-glucosidase. Medicinal Chemistry Research, 2012, 21, 3984-3993.                                                                                         | 2.4 | 17        |
| 29 | CoMSIA and POM analyses of anti-malarial activity of synthetic prodiginines. Bioorganic and Medicinal<br>Chemistry Letters, 2012, 22, 4827-4835.                                                                                                                | 2.2 | 31        |
| 30 | An Overview of Innovations in Analysis and Beneficial Health Effects of Wine Polyphenols.<br>Mini-Reviews in Medicinal Chemistry, 2011, 11, 1256-1267.                                                                                                          | 2.4 | 8         |
| 31 | Antioxidative and vasodilatory effects of phenolic acids in wine. Food Chemistry, 2010, 119, 1205-1210.                                                                                                                                                         | 8.2 | 100       |
| 32 | QSAR modeling of anthocyanins, anthocyanidins and catechins as inhibitors of lipid peroxidation using three-dimensional descriptors. Medicinal Chemistry Research, 2009, 18, 579-588.                                                                           | 2.4 | 10        |
| 33 | Polyphenolic composition of Croatian wines with different geographical origins. Food Chemistry, 2009, 115, 54-60.                                                                                                                                               | 8.2 | 103       |
| 34 | QSAR study of antioxidant activity of wine polyphenols. European Journal of Medicinal Chemistry, 2009, 44, 400-408.                                                                                                                                             | 5.5 | 72        |
| 35 | From functional food to medicinal product: Systematic approach in analysis of polyphenolics from propolis and wine. Nutrition Journal, 2009, 8, 33.                                                                                                             | 3.4 | 66        |
| 36 | SAR and QSAR of the Antioxidant Activity of Flavonoids. Current Medicinal Chemistry, 2007, 14, 827-845.                                                                                                                                                         | 2.4 | 350       |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Synthesis and crystal structure of 2[(Ta6Cl12)Cl3(n-BuCN)3]·[(Ta6Cl12)Cl4(n-BuCN)2]·n-BuCN. The first<br>cluster compound containing [Ta6Cl12]3+ and [Ta6Cl12]4+ cores. Comptes Rendus Chimie, 2005, 8,<br>1766-1773. | 0.5 | 7         |
| 38 | Nitrile Cluster Compounds [(M6X12)X2(RCN)4] (M=Nb, Ta; X=Cl, Br; R=Et, n-Pr, n-Bu). Journal of Cluster Science, 2002, 13, 215-222.                                                                                    | 3.3 | 11        |
| 39 | Green Synthesis of Thiazolidine-2,4-dione Derivatives and Their Lipoxygenase Inhibition Activity With QSAR and Molecular Docking Studies. Frontiers in Chemistry, 0, 10, .                                            | 3.6 | 3         |