
Revathi R Bacsa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/21753/publications.pdf Version: 2024-02-01

ΡΕνλτηι Ρ Βλοςλ

#	Article	IF	CITATIONS
1	Optimizing metal-support interphase for efficient fuel cell oxygen reduction reaction catalyst. Journal of Colloid and Interface Science, 2020, 561, 439-448.	5.0	13
2	Preparation of Few-Layer Graphene/Carbon Nanotube Hybrids Using Oxide Spinel Catalysts. Journal of Carbon Research, 2019, 5, 28.	1.4	2
3	Polyoxotungstate@Carbon Nanocomposites As Oxygen Reduction Reaction (ORR) Electrocatalysts. Langmuir, 2018, 34, 6376-6387.	1.6	41
4	Role of Graphene in Water-Assisted Oxidation of Copper in Relation to Dry Transfer of Graphene. Chemistry of Materials, 2017, 29, 4546-4556.	3.2	63
5	N-doped few-layered graphene-polyNi complex nanocomposite with excellent electrochromic properties. Carbon, 2017, 120, 32-43.	5.4	17
6	Effect of the Carbon Support on the Catalytic Activity of Rutheniumâ€Magnetite Catalysts for <i>p</i> â€Chloronitrobenzene Hydrogenation. ChemCatChem, 2015, 7, 2971-2978.	1.8	20
7	Biomolecules Electrochemical Sensing Properties of a PMo11V@N-Doped Few Layer Graphene Nanocomposite. Inorganics, 2015, 3, 178-193.	1.2	17
8	Few layer graphene synthesis on transition metal ferrite catalysts. Carbon, 2015, 89, 350-360.	5.4	32
9	Synergistic effect between carbon nanomaterials and ZnO for photocatalytic water decontamination. Journal of Catalysis, 2015, 331, 172-180.	3.1	91
10	Developing highly active photocatalysts: Gold-loaded ZnO for solar phenol oxidation. Journal of Catalysis, 2014, 316, 182-190.	3.1	65
11	Oxidized few layer graphene and graphite as metal-free catalysts for aqueous sulfide oxidation. Journal of Materials Chemistry A, 2013, 1, 9491.	5.2	25
12	Synergistic effect between few layer graphene and carbon nanotube supports for palladium catalyzing electrochemical oxidation of alcohols. Journal of Energy Chemistry, 2013, 22, 296-304.	7.1	33
13	Geomimetic catalysis: From volcanic stones to ultra-selective Fe–Mo/Al2O3–TiO2 catalysts for few-walled carbon nanotube production. Carbon, 2013, 64, 219-224.	5.4	5
14	Deposition of gold nanoparticles on ZnO and their catalytic activity for hydrogenation applications. Catalysis Communications, 2012, 22, 79-82.	1.6	22
15	Catalytic activity of gold supported on ZnO tetrapods for the preferential oxidation of carbon monoxide under hydrogen rich conditions. Nanoscale, 2011, 3, 929-932.	2.8	22
16	Theoretical and Experimental Studies on the Carbonâ€Nanotube Surface Oxidation by Nitric Acid: Interplay between Functionalization and Vacancy Enlargement. Chemistry - A European Journal, 2011, 17, 11467-11477.	1.7	93
17	Inside Cover: Theoretical and Experimental Studies on the Carbon-Nanotube Surface Oxidation by Nitric Acid: Interplay between Functionalization and Vacancy Enlargement (Chem. Eur. J. 41/2011). Chemistry - A European Journal, 2011, 17, 11354-11354.	1.7	1
18	Catalytic performance of Au/ZnO nanocatalysts for CO oxidation. Journal of Catalysis, 2010, 273, 191-198.	3.1	99

Revathi R Bacsa

#	Article	IF	CITATIONS
19	Selective Deposition of Gold Nanoparticles on or Inside Carbon Nanotubes and Their Catalytic Activity for Preferential Oxidation of CO. European Journal of Inorganic Chemistry, 2010, 2010, 5096-5102.	1.0	50
20	Multi-walled carbon nanotubes functionalized by carboxylic groups: Activation of TiO2 (anatase) and phosphate olivines (LiMnPO4; LiFePO4) for electrochemical Li-storage. Journal of Power Sources, 2010, 195, 5360-5369.	4.0	68
21	Photodeposition of Au and Pt on ZnO and TiO2. Studies in Surface Science and Catalysis, 2010, 175, 629-633.	1.5	6
22	CVD Synthesis of Shape and Size Controlled ZnO Nanoparticles for Application as UV Filters. ECS Transactions, 2009, 25, 1177-1183.	0.3	2
23	Synthesis and Structure–Property Correlation in Shapeâ€Controlled ZnO Nanoparticles Prepared by Chemical Vapor Synthesis and their Application in Dyeâ€5ensitized Solar Cells. Advanced Functional Materials, 2009, 19, 875-886.	7.8	67
24	Chemical Vapor Synthesis of Zinc Oxide Nanoparticles: Experimental and Preliminary Modeling Studies. Journal of Physical Chemistry C, 2009, 113, 19845-19852.	1.5	38
25	Ultraviolet photon absorption in single- and double-wall carbon nanotubes and peapods: Heating-induced phonon line broadening, wall coupling, and transformation. Physical Review B, 2007, 76, .	1.1	9
26	Large scale synthesis of zinc oxide nanorods by homogeneous chemical vapour deposition and their characterisation. Surface and Coatings Technology, 2007, 201, 9200-9204.	2.2	33
27	Thermal transfer in SWNTs and peapods under UV-irradiation. Physica Status Solidi (B): Basic Research, 2007, 244, 4064-4068.	0.7	2
28	Laser Induced Modifications of Carbon Nanotube Composite Surfaces. Japanese Journal of Applied Physics, 2006, 45, 7776-7779.	0.8	1
29	Spectroscopic detection of carbon nanotube interaction with amphiphilic molecules in epoxy resin composites. Journal of Applied Physics, 2005, 97, 034303.	1.1	26
30	Catalytically Grown Carbon Nanotubes of Small Diameter Have a High Young's Modulus. Nano Letters, 2005, 5, 2074-2077.	4.5	65
31	Preparation, Testing and Characterization of Doped TiO2Active in the Peroxidation of Biomolecules under Visible Light. Journal of Physical Chemistry B, 2005, 109, 5994-6003.	1.2	201
32	Light scattering of double wall carbon nanotubes under hydrostatic pressure: pressure effects on the internal and external tubes. Physica Status Solidi (B): Basic Research, 2004, 241, 3360-3366.	0.7	14
33	CCVD synthesis of carbon nanotubes from (Mg,Co,Mo)O catalysts: influence of the proportions of cobalt and molybdenum. Journal of Materials Chemistry, 2004, 14, 646.	6.7	75
34	Hydrogen Storage in High Surface Area Carbon Nanotubes Produced by Catalytic Chemical Vapor Deposition. Journal of Physical Chemistry B, 2004, 108, 12718-12723.	1.2	69
35	Gram-scale CCVD synthesis of double-walled carbon nanotubes. Chemical Communications, 2003, , 1442.	2.2	350
36	(Mg,Co)O Solid‣olution Precursors for the Large‣cale Synthesis of Carbon Nanotubes by Catalytic Chemical Vapor Deposition. Journal of the American Ceramic Society, 2002, 85, 2666-2669.	1.9	13

Revathi R Bacsa

#	Article	IF	CITATIONS
37	Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon, 2001, 39, 507-514.	5.4	1,782
38	Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes. Physical Review Letters, 1999, 82, 944-947.	2.9	1,352
39	Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid. Applied Catalysis B: Environmental, 1998, 16, 19-29.	10.8	341
40	Rutile Formation in Hydrothermally Crystallized Nanosized Titania. Journal of the American Ceramic Society, 1996, 79, 2185-2188.	1.9	108
41	Lowâ€ŧemperature synthesis of BaTiO3thin films on silicon substrates by hydrothermal reaction. Applied Physics Letters, 1993, 63, 1053-1055.	1.5	47
42	Electrochemical, hydrothermal, and electrochemical-hydrothermal synthesis of barium titanate thin films on titanium substrates. Journal of Materials Research, 1992, 7, 423-428.	1.2	115