Evgeny A Uslamin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/217527/publications.pdf

Version: 2024-02-01

33 papers 1,466 citations

³⁹⁴²⁸⁶
19
h-index

434063 31 g-index

39 all docs 39 docs citations

39 times ranked 1358 citing authors

#	Article	IF	CITATIONS
1	A scanning pulse reaction technique for transient analysis of the methanol-to-hydrocarbons reaction. Catalysis Today, 2023, 417, 113740.	2.2	4
2	Understanding the Preparation and Reactivity of Mo/ZSM \hat{a} Methane Dehydroaromatization Catalysts. Chemistry - A European Journal, 2022, 28, .	1.7	13
3	High Stability of Methanol to Aromatic Conversion over Bimetallic Ca,Ga-Modified ZSM-5. ACS Catalysis, 2022, 12, 3189-3200.	5. 5	28
4	Basic Promotors Impact Thermodynamics and Catalyst Speciation in Homogeneous Carbonyl Hydrogenation. Journal of the American Chemical Society, 2022, 144, 8129-8137.	6.6	26
5	Different mechanisms of ethane aromatization over Mo/ZSM-5 and Ga/ZSM-5 catalysts. Catalysis Today, 2021, 369, 184-192.	2.2	43
6	Dry reforming of methane to test passivation stability of Ni/ Al2O3 catalysts. Applied Catalysis A: General, 2021, 612, 117987.	2.2	17
7	Utilizing Design of Experiments Approach to Assess Kinetic Parameters for a Mn Homogeneous Hydrogenation Catalyst. ChemCatChem, 2021, 13, 4886-4896.	1.8	5
8	Impact of Promoter Addition on the Regeneration of Ni/Al ₂ O ₃ Dry Reforming Catalysts. ChemCatChem, 2021, 13, 5034-5046.	1.8	11
9	Automated high-resolution sampling and multi-mode operando spectroscopy of (bio-)chemical reactions for kinetic analysis, reaction characterization, and quality control., 2021, 1, 100002.		1
10	Challenges for the utilization of methane as a chemical feedstock. Mendeleev Communications, 2021, 31, 584-592.	0.6	18
11	Tungsten Peroxopolyoxo Complexes as Advanced Catalysts for the Oxidation of Organic Compounds with Hydrogen Peroxide. Applied Catalysis A: General, 2020, 604, 117786.	2.2	13
12	Tuning the reactivity of molybdenum (oxy)carbide catalysts by the carburization degree: CO ₂ reduction and anisole hydrodeoxygenation. Catalysis Science and Technology, 2020, 10, 3635-3645.	2.1	27
13	Impact of small promoter amounts on coke structure in dry reforming of methane over Ni/ZrO ₂ . Catalysis Science and Technology, 2020, 10, 3965-3974.	2.1	27
14	Aromatization of ethylene over zeolite-based catalysts. Catalysis Science and Technology, 2020, 10, 2774-2785.	2.1	70
15	Co-Aromatization of Furan and Methanol over ZSM-5—A Pathway to Bio-Aromatics. ACS Catalysis, 2019, 9, 8547-8554.	5. 5	29
16	Reversible Nature of Coke Formation on Mo/ZSMâ€5 Methane Dehydroaromatization Catalysts. Angewandte Chemie - International Edition, 2019, 58, 7068-7072.	7.2	65
17	Reversible Nature of Coke Formation on Mo/ZSMâ€5 Methane Dehydroaromatization Catalysts. Angewandte Chemie, 2019, 131, 7142-7146.	1.6	4
18	Gallium-promoted HZSM-5 zeolites as efficient catalysts for the aromatization of biomass-derived furans. Chemical Engineering Science, 2019, 198, 305-316.	1.9	68

#	Article	IF	CITATIONS
19	Diphenylalanine-Based Microribbons for Piezoelectric Applications via Inkjet Printing. ACS Applied Materials & Samp; Interfaces, 2018, 10, 10543-10551.	4.0	34
20	Confined Carbon Mediating Dehydroaromatization of Methane over Mo/ZSMâ€5. Angewandte Chemie, 2018, 130, 1028-1032.	1.6	18
21	Innentitelbild: Confined Carbon Mediating Dehydroaromatization of Methane over Mo/ZSMâ€5 (Angew.) Tj ETQq	1 1 0.7843 1.6	814 rgBT /
22	Confined Carbon Mediating Dehydroaromatization of Methane over Mo/ZSMâ€5. Angewandte Chemie - International Edition, 2018, 57, 1016-1020.	7.2	128
23	An Active Alkali-Exchanged Faujasite Catalyst for <i>p</i> -Xylene Production via the One-Pot Diels–Alder Cycloaddition/Dehydration Reaction of 2,5-Dimethylfuran with Ethylene. ACS Catalysis, 2018, 8, 760-769.	5.5	54
24	Catalytic conversion of furanic compounds over Ga-modified ZSM-5 zeolites as a route to biomass-derived aromatics. Green Chemistry, 2018, 20, 3818-3827.	4.6	42
25	Structure and Evolution of Confined Carbon Species during Methane Dehydroaromatization over Mo/ZSM-5. ACS Catalysis, 2018, 8, 8459-8467.	5.5	79
26	Stable Mo/HZSM-5 methane dehydroaromatization catalysts optimized for high-temperature calcination-regeneration. Journal of Catalysis, 2017, 346, 125-133.	3.1	147
27	Nonâ€Pincerâ€Type Manganese Complexes as Efficient Catalysts for the Hydrogenation of Esters. Angewandte Chemie - International Edition, 2017, 56, 7531-7534.	7.2	169
28	Nonâ€Pincerâ€Type Manganese Complexes as Efficient Catalysts for the Hydrogenation of Esters. Angewandte Chemie, 2017, 129, 7639-7642.	1.6	40
29	Methane Dehydroaromatization by Mo/HZSM-5: Mono- or Bifunctional Catalysis?. ACS Catalysis, 2017, 7, 520-529.	5.5	155
30	Innenrýcktitelbild: Nonâ€Pincerâ€₹ype Manganese Complexes as Efficient Catalysts for the Hydrogenation of Esters (Angew. Chem. 26/2017). Angewandte Chemie, 2017, 129, 7787-7787.	1.6	0
31	Selective Coke Combustion by Oxygen Pulsing During Mo/ZSMâ€5â€Catalyzed Methane Dehydroaromatization. Angewandte Chemie - International Edition, 2016, 55, 15086-15090.	7.2	94
32	Selective Coke Combustion by Oxygen Pulsing During Mo/ZSMâ€5â€Catalyzed Methane Dehydroaromatization. Angewandte Chemie, 2016, 128, 15310-15314.	1.6	18
33	Paleodiet, Radiocarbon Chronology, and the Possibility of Freshwater Reservoir Effect for Preobrazhenka 6 Burial Ground, Western Siberia: Preliminary Results. Radiocarbon, 2015, 57, 595-610.	0.8	16