
Adelaide M Arruda-Olson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2175265/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detection of Hypertrophic Cardiomyopathy Using a Convolutional Neural Network-Enabled Electrocardiogram. Journal of the American College of Cardiology, 2020, 75, 722-733.	1.2	183
2	Neutrophilia Predicts Death and Heart Failure After Myocardial Infarction. Circulation: Cardiovascular Quality and Outcomes, 2009, 2, 656-662.	0.9	172
3	Prognostic value of exercise echocardiographyin 5,798 patients: is there a gender difference?. Journal of the American College of Cardiology, 2002, 39, 625-631.	1.2	170
4	Cardiovascular Effects of Sildenafil During Exercise in Men With Known or Probable Coronary Artery Disease. JAMA - Journal of the American Medical Association, 2002, 287, 719.	3.8	163
5	Artificial Intelligence in Cardiology: Present and Future. Mayo Clinic Proceedings, 2020, 95, 1015-1039.	1.4	127
6	Yield of Noncardiac Biopsy for the Diagnosis of Transthyretin Cardiac Amyloidosis. American Journal of Cardiology, 2014, 113, 1723-1727.	0.7	112
7	Billing code algorithms to identify cases of peripheral artery disease from administrative data. Journal of the American Medical Informatics Association: JAMIA, 2013, 20, e349-e354.	2.2	85
8	Natural language processing of clinical notes for identification of critical limb ischemia. International Journal of Medical Informatics, 2018, 111, 83-89.	1.6	77
9	Mining peripheral arterial disease cases from narrative clinical notes using natural language processing. Journal of Vascular Surgery, 2017, 65, 1753-1761.	0.6	75
10	Artificial Intelligence (AI)-Empowered Echocardiography Interpretation: A State-of-the-Art Review. Journal of Clinical Medicine, 2021, 10, 1391.	1.0	36
11	Detection of hypertrophic cardiomyopathy by an artificial intelligence electrocardiogram in children and adolescents. International Journal of Cardiology, 2021, 340, 42-47.	0.8	35
12	Stress Echo 2030: The Novel ABCDE-(FGLPR) Protocol to Define the Future of Imaging. Journal of Clinical Medicine, 2021, 10, 3641.	1.0	33
13	Sleep Apnea and Cardiovascular Disease. Herz, 2003, 28, 298-303.	0.4	26
14	Leveraging the Electronic Health Record to Create an Automated Realâ€Time Prognostic Tool for Peripheral Arterial Disease. Journal of the American Heart Association, 2018, 7, e009680.	1.6	23
15	Cardiac Myxoma. JACC: Cardiovascular Imaging, 2017, 10, 203-206.	2.3	22
16	Association of Ankle-Brachial Indices With Limb Revascularization or Amputation in Patients With Peripheral Artery Disease. JAMA Network Open, 2018, 1, e185547.	2.8	21
17	Automated extraction of sudden cardiac death risk factors in hypertrophic cardiomyopathy patients by natural language processing. International Journal of Medical Informatics, 2019, 128, 32-38.	1.6	21
18	Identifying peripheral arterial disease cases using natural language processing of clinical notes. ,		16

2016, 2016, 126-131.

#	Article	IF	CITATIONS
19	Typical blood pressure response during dobutamine stress echocardiography of patients without known cardiovascular disease who have normal stress echocardiograms. European Heart Journal Cardiovascular Imaging, 2016, 17, 557-563.	0.5	15
20	Frequency, Predictors, and Implications of Abnormal Blood Pressure Responses During Dobutamine Stress Echocardiography. Circulation: Cardiovascular Imaging, 2017, 10, .	1.3	14
21	Innovative Informatics Approaches for Peripheral Artery Disease: Current State and Provider Survey of Strategies for Improving Guideline-Based Care. Mayo Clinic Proceedings Innovations, Quality & Outcomes, 2018, 2, 129-136.	1.2	14
22	Burden of hospitalization in clinically diagnosed peripheral artery disease: A community-based study. Vascular Medicine, 2018, 23, 23-31.	0.8	12
23	Effect of second-generation sulfonylureas on survival in patients with diabetes mellitus after myocardial infarction. Mayo Clinic Proceedings, 2009, 84, 28-33.	1.4	7
24	Conversion of left atrial volume to diameter for automated estimation of sudden cardiac death risk in hypertrophic cardiomyopathy. Echocardiography, 2021, 38, 183-188.	0.3	6
25	Deep Neural Network for Cardiac Magnetic Resonance Image Segmentation. Journal of Imaging, 2022, 8, 149.	1.7	6
26	Explanatory Analysis of a Machine Learning Model to Identify Hypertrophic Cardiomyopathy Patients from EHR Using Diagnostic Codes. , 2020, 2020, 1932-1937.		5
27	Appropriate Use of Exercise Testing Prior to Administration of Drugs for Treatment of Erectile Dysfunction. Herz, 2003, 28, 291-297.	0.4	4
28	Natural Language Processing Based Machine Learning Model Using Cardiac MRI Reports to Identify Hypertrophic Cardiomyopathy Patients. , 2021, 2021, .		3
29	Usability of a Digital Registry to Promote Secondary Prevention for Peripheral Artery Disease Patients. Mayo Clinic Proceedings Innovations, Quality & Outcomes, 2021, 5, 94-102.	1.2	2
30	Provider Survey on Automated Clinical Decision Support for Cardiovascular Risk Assessment. Mayo Clinic Proceedings Innovations, Quality & Outcomes, 2019, 3, 23-29.	1.2	1
31	Natural language processing of implantable cardioverter-defibrillator reports in hypertrophic cardiomyopathy: A paradigm for longitudinal device follow-up. Cardiovascular Digital Health Journal, 2021, 2, 264-269.	0.5	1