Paulo Roberto Ribeiro Costa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2174877/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification and characterization of coumestans as novel HCV NS5B polymerase inhibitors. Nucleic Acids Research, 2008, 36, 1482-1496.	14.5	96
2	Synthesis and preliminary pharmacological evaluation of new (±) 1,4-naphthoquinones structurally related to lapachol. Bioorganic and Medicinal Chemistry, 2002, 10, 2731-2738.	3.0	76
3	Synthesis and preliminary pharmacological evaluation of coumestans with different patterns of oxygenation. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 283-286.	2.2	68
4	LQB-118, an orally active pterocarpanquinone, induces selective oxidative stress and apoptosis in Leishmania amazonensis. Journal of Antimicrobial Chemotherapy, 2013, 68, 789-799.	3.0	57
5	Syn-Selective Michael Addition of Nitromethane Derivatives to Enoates Derived from (R)-(+)-Glyceraldehyde Acetonide. Journal of Organic Chemistry, 1997, 62, 4002-4006.	3.2	49
6	Palladium-Catalyzed Tandem Heck-Lactonization fromo-lodophenols and Enoates: Synthesis of Coumarins and the Study of the Mechanism by Electrospray Ionization Mass Spectrometry. Journal of Organic Chemistry, 2010, 75, 7085-7091.	3.2	48
7	Structure–activity relationship of wedelolactone analogues: Structural requirements for inhibition of Na+,K+-ATPase and binding to the central benzodiazepine receptor. Bioorganic and Medicinal Chemistry, 2006, 14, 7962-7966.	3.0	47
8	Comparison of the cytotoxic effect of lapachol, α-lapachone and pentacyclic 1,4-naphthoquinones on human leukemic cells. Investigational New Drugs, 2010, 28, 139-144.	2.6	47
9	Antitumoral, antileishmanial and antimalarial activity of pentacyclic 1,4-naphthoquinone derivatives. Journal of the Brazilian Chemical Society, 2009, 20, 176-182.	0.6	46
10	Efficient synthesis of cytotoxic quinones: 2â€Acetylâ€4 <i>H</i> ,9 <i>H</i> â€naphtho[2,3â€ <i>b</i>]furanâ€4,9â€dione (6) and (±)â€2â€(1â€hydroxyethyl)â€4 <i>H</i> ,9 <i>H</i> â€naphtho[2,3â€ <i>b</i>]furanâ€4,9â€dione (7). Jo Heterocyclic Chemistry, 1984, 21, 621-622.	urnal of	45
11	Synthesis and pharmacological evaluation of prenylated and benzylated pterocarpans against snake venom. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 431-435.	2.2	42
12	Pterocarpanquinones, aza-pterocarpanquinone and derivatives: Synthesis, antineoplasic activity on human malignant cell lines and antileishmanial activity on Leishmania amazonensis. Bioorganic and Medicinal Chemistry, 2011, 19, 6885-6891.	3.0	42
13	New pterocarpanquinones: Synthesis, antineoplasic activity on cultured human malignant cell lines and TNF-α modulation in human PBMC cells. Bioorganic and Medicinal Chemistry, 2010, 18, 1610-1616.	3.0	41
14	Interaction between bioactive compound 11a-N-tosyl-5-deoxi-pterocarpan (LQB-223) and Calf thymus DNA: Spectroscopic approach, electrophoresis and theoretical studies. International Journal of Biological Macromolecules, 2017, 96, 223-233.	7.5	36
15	Effectiveness of the local or oral delivery of the novel naphthopterocarpanquinone LQB-118 against cutaneous leishmaniasis. Journal of Antimicrobial Chemotherapy, 2011, 66, 1555-1559.	3.0	35
16	Asymmetric Michael addition of chiral imines to phenylvinylsulfone: Preparation of key chiral building blocks for the synthesis of Aspidosperma and Hunteria alkaloids Tetrahedron: Asymmetry, 1991, 2, 199-202.	1.8	31
17	Safrol e eugenol: estudo da reatividade quÃmica e uso em sÃntese de produtos naturais biologicamente ativos e seus derivados. Quimica Nova, 2000, 23, 357-369.	0.3	31
18	LQB-118, a pterocarpanquinone structurally related to lapachol [2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone]: a novel class of agent with high apoptotic effect in chronic myeloid leukemia cells. Investigational New Drugs, 2011, 29, 1143-1155.	2.6	31

#	Article	IF	CITATIONS
19	α-Phenyl-N-tert-butyl nitrone (PBN) derivatives: Synthesis and protective action against microvascular damages induced by ischemia/reperfusion. Bioorganic and Medicinal Chemistry, 2007, 15, 3572-3578.	3.0	30
20	Diastereoselective Michael Addition of Nitromethane to Enoates Derived From (R)-Glyceraldehyde Acetonide. Synthesis, 1994, 1994, 474-476.	2.3	29
21	(±)-3,4-Dihydroxy-8,9-methylenedioxypterocarpan and derivatives: Cytotoxic effect on human leukemia cell lines. European Journal of Medicinal Chemistry, 2009, 44, 920-925.	5.5	29
22	Switching Diastereoselectivity in Catalytic Enantioselective (3+2) Cycloadditions of Azomethine Ylides Promoted by Metal Salts and Privileged Segphos-Derived Ligands. Journal of Organic Chemistry, 2019, 84, 10593-10605.	3.2	29
23	Binap-silver salts as chiral catalysts for the enantioselective 1,3-dipolar cycloaddition of azomethine ylides and alkenes. Tetrahedron: Asymmetry, 2012, 23, 1596-1606.	1.8	28
24	Expeditious, stereocontrolled syntheses of racemic and natural brasilenol through intramolecular asymmetry transfer. Absolute stereochemistry of brasilenol. Journal of Organic Chemistry, 1987, 52, 1169-1170.	3.2	25
25	Ability of a synthetic coumestan to antagonize Bothrops snake venom activities. Toxicon, 2010, 55, 488-496.	1.6	25
26	Asymmetric Friedel-Crafts reaction mediated by new chiral auxiliaries derived from (1S)-(â~')-β-pinene: Enantioselective synthesis of (â~')-8-Norethyl, 1′-normethyl Etodolac. Tetrahedron Letters, 1997, 38, 7021-7024.	1.4	23
27	Selective conjugate addition of nitromethane to enoates derived from d-mannitol and l-tartaric acid. Tetrahedron: Asymmetry, 2002, 13, 1025-1031.	1.8	23
28	New carbohydrate-based chiral auxiliaries in Diels–Alder reaction. Tetrahedron: Asymmetry, 1998, 9, 2671-2680.	1.8	22
29	2-Methoxy-3,8,9-trihydroxy coumestan: a new synthetic inhibitor of Na+,K+-ATPase with an original mechanism of action. Biochemical Pharmacology, 2003, 66, 2169-2176.	4.4	22
30	Evaluation of Coumarin and Neoflavone Derivatives as <scp>HCV NS</scp> 5 <scp>B</scp> Polymerase Inhibitors. Chemical Biology and Drug Design, 2013, 81, 607-614.	3.2	22
31	Preclinical Studies Evaluating Subacute Toxicity and Therapeutic Efficacy of LQB-118 in Experimental Visceral Leishmaniasis. Antimicrobial Agents and Chemotherapy, 2016, 60, 3794-3801.	3.2	22
32	Bifunctional primary amine 2-aminobenzimidazole organocatalyst anchored to trans-cyclohexane-1,2-diamine in enantioselective conjugate additions of aldehydes. Tetrahedron: Asymmetry, 2016, 27, 118-122.	1.8	22
33	Synthesis of β-amino arylketones through the addition of ArLi derivatives to β-aminoesters. Tetrahedron Letters, 2001, 42, 3525-3527.	1.4	21
34	A new type of pterocarpanquinone that affects Toxoplasma gondii tachyzoites in vitro. Veterinary Parasitology, 2012, 186, 261-269.	1.8	21
35	Antileishmanial Activity of Ezetimibe: Inhibition of Sterol Biosynthesis, <i>In Vitro</i> Synergy with Azoles, and Efficacy in Experimental Cutaneous Leishmaniasis. Antimicrobial Agents and Chemotherapy, 2016, 60, 6844-6852.	3.2	21
36	A Convenient Synthesis of (±)-4-Prenylpterocarpin. Synthesis, 1992, 1992, 914-916.	2.3	20

#	Article	IF	CITATIONS
37	Palladium-catalyzed oxyarylation of olefins using silver carbonate as the base. Probing the mechanism by electrospray ionization mass spectrometry. Journal of Organometallic Chemistry, 2010, 695, 2062-2067.	1.8	20
38	<i>N</i> - <i>tert</i> -Butanesulfinyl imines in the asymmetric synthesis of nitrogen-containing heterocycles. Beilstein Journal of Organic Chemistry, 2021, 17, 1096-1140.	2.2	20
39	Pterocarpanquinone LQB-118 Induces Apoptosis in Leishmania (Viannia) braziliensis and Controls Lesions in Infected Hamsters. PLoS ONE, 2014, 9, e109672.	2.5	20
40	Trans-2-Arylcyclohexanols: Use as auxiliaries in the mukaiyama aldol-type condensation between silyl enol esters and aldehydes. Tetrahedron Letters, 1992, 33, 4921-4922.	1.4	19
41	Formal synthesis of (â^')-Vallesamidine A 2,2,3-trialkylindoline alkaloid. Tetrahedron: Asymmetry, 1993, 4, 1499-1500.	1.8	19
42	lodination of phenols in water using easy to handle amine-iodine complexes. Journal of the Brazilian Chemical Society, 2009, 20, 1916-1920.	0.6	19
43	Asymmetric Transfer Hydrogenation of Arylidene-Substituted Chromanones and Tetralones Catalyzed by Noyori–lkariya Ru(II) Complexes: One-Pot Reduction of Câ•C and Câ•O bonds. Journal of Organic Chemistry, 2021, 86, 4849-4858.	3.2	19
44	N-tert-Butyl and N-methyl nitrones derived from aromatic aldehydes inhibit macromolecular permeability increase induced by ischemia/reperfusion in hamsters. Bioorganic and Medicinal Chemistry, 2009, 17, 3995-3998.	3.0	18
45	Synthesis of Dimethoxyfuranonaftoquinones. Synthetic Communications, 1988, 18, 1731-1742.	2.1	17
46	Total synthesis of pterocarpan: (±)-neorautenane. Journal of the Chemical Society Perkin Transactions 1, 1995, , 949-951.	0.9	17
47	Synthesis and structural determination of new chiral auxiliaries derived from (â~)-β-pinene. Tetrahedron: Asymmetry, 1997, 8, 579-583.	1.8	17
48	A tandem palladium-catalyzed Heck-lactonization through the reaction of ortho-iodophenols with β-substituted acrylates: synthesis of 4,6-substituted coumarins. Tetrahedron Letters, 2008, 49, 3322-3325.	1.4	17
49	Synthesis of Chromen[4,3â€ <i>b</i>]pyrrolidines by Intramolecular 1,3â€Dipolar Cycloadditions of Azomethine Ylides: An Experimental and Computational Assessment of the Origin of Stereocontrol. European Journal of Organic Chemistry, 2015, 2015, 4689-4698.	2.4	17
50	Enantioselective Synthesis, DFT Calculations, and Preliminary Antineoplastic Activity of Dibenzo 1-Azaspiro[4.5]decanes on Drug-Resistant Leukemias. Journal of Organic Chemistry, 2019, 84, 2219-2233.	3.2	17
51	Theoretical and Experimental Studies of New Modified Isoflavonoids as Potential Inhibitors of Topoisomerase I from Plasmodium falciparum. PLoS ONE, 2014, 9, e91191.	2.5	17
52	New chiral auxiliaries derived from β -pinene: Their use in the asymmetric reduction of β-keto-esters. Tetrahedron: Asymmetry, 1991, 2, 353-356.	1.8	16
53	Enantioselective synthesis of (R)-(+)-β-piperonyl-γ-butyrolactone. Tetrahedron: Asymmetry, 1994, 5, 1219-1220	1.8	16
54	Stereocontrolled elaboration of quaternary carbon centers involving the asymmetric michael-type alkylation of chiral imines: an efficient enantioselective access to (+)-vincamine. Tetrahedron: Asymmetry, 1997, 8, 1963-1966.	1.8	16

#	Article	IF	CITATIONS
55	DBU as a catalyst for the synthesis of amides via aminolysis of methyl esters. Journal of the Brazilian Chemical Society, 2011, 22, 2186-2190.	0.6	16
56	The pterocarpanquinone LQB 118 induces apoptosis in tumor cells through the intrinsic pathway and the endoplasmic reticulum stress pathway. Anti-Cancer Drugs, 2013, 24, 73-83.	1.4	16
57	Asymmetric hydrogenation and transfer hydrogenation in the enantioselective synthesis of flavonoids. Organic Chemistry Frontiers, 2022, 9, 1165-1194.	4.5	16
58	Synthesis of chiral pyrrolidine and pyrrole derivatives through the chemoselective Dieckmann reaction of α,β-aminodiesters. Tetrahedron: Asymmetry, 2000, 11, 4239-4243.	1.8	15
59	A practical and efficient preparation of (â`')-(4aS,5R)-4,4a,5,6,7,8-hexahydro-4a,5-dimethyl-2(3H)-naphthalenone: a key intermediate in the synthesis of (â^')-dehydrofukinone. Tetrahedron: Asymmetry, 2001, 12, 579-584.	1.8	15
60	Characterization of a new synthetic isoflavonoid with inverse agonist activity at the central benzodiazepine receptor. European Journal of Pharmacology, 2004, 495, 87-96.	3.5	15
61	Stereoselective preparation of pyrrolidin-2-ones from a Z-enoate derived from d-(+)-mannitol. Tetrahedron: Asymmetry, 2004, 15, 2313-2314.	1.8	15
62	The pterocarpanquinone LQB-118 inhibits tumor cell proliferation by downregulation of c-Myc and cyclins D1 and B1 mRNA and upregulation of p21 cell cycle inhibitor expression. Bioorganic and Medicinal Chemistry, 2014, 22, 3115-3122.	3.0	15
63	Synthesis and biological evaluation of α-aryl-α-tetralone derivatives as hepatitis C virus inhibitors. European Journal of Medicinal Chemistry, 2015, 93, 51-54.	5.5	15
64	Carbohydrates and Terpenes as Chiral Auxiliaries: the Stereoselective Synthesis of (+) or (-)-β-Piperonyl-γ-Butirolactone. Journal of the Brazilian Chemical Society, 1996, 7, 67-73.	0.6	15
65	Asymmetric Friedel - Crafts Reaction: An Application to the Synthesis of an Etodolac Analogue. Synthetic Communications, 1996, 26, 3671-3676.	2.1	14
66	The regio- and stereoselective oxyamination of pinenes and camphene. Tetrahedron: Asymmetry, 2000, 11, 3845-3848.	1.8	14
67	Synthesis of 5-deoxypterocarpens, pterocarpens, and coumestans by intramolecular Heck reaction. Tetrahedron Letters, 2009, 50, 3753-3755.	1.4	14
68	Selective synthesis of brasilenol, a novel sesquiterpene from the sea hare Aplysia brasiliana and the red alga Laurencia obtusa. Journal of Organic Chemistry, 1986, 51, 4250-4253.	3.2	13
69	Regioselective Lithiation of Resorcinol Derivatives: Synthesis of Mono O-MOM- and O-Benzylresorcinols Prenylated at C-2 or C-4 Positions. Synthesis, 1999, 1999, 1017-1021.	2.3	13
70	4-Chromenesulphones: synthesis and transformation to isoflavonoid models. Tetrahedron Letters, 2002, 43, 6893-6895.	1.4	13
71	Microwaveâ€Promoted Palladiumâ€Catalysed Oxyarylation of Dihydronaphthalene and Chromenes by <i>o</i> â€lodophenols and Its Acetates. European Journal of Organic Chemistry, 2011, 2011, 3313-3316.	2.4	13
72	Lapachol and synthetic derivatives: in vitro and in vivo activities against Bothrops snake venoms. PLoS ONE, 2019, 14, e0211229.	2.5	13

#	Article	IF	CITATIONS
73	The Therapeutical Potential of a Novel Pterocarpanquinone LQB-118 to Target Inhibitor of Apoptosis Proteins in Acute Myeloid Leukemia Cells. Anti-Cancer Agents in Medicinal Chemistry, 2013, 13, 341-351.	1.7	13
74	Enantioselective synthesis of substituted octalones. Tetrahedron: Asymmetry, 1994, 5, 1433-1434.	1.8	12
75	The first synthesis of (±)-3,4-dihydroxy-8,9-methylenedioxypterocarpan, an antitumoral agent and its coumestan derivative. Journal of the Brazilian Chemical Society, 2004, 15, 979-981.	0.6	12
76	Syn or anti Selective Michael addition of allyl phenyl sulphone and phenyl prenyl sulphone to enoates derived from D-mannitol. Tetrahedron Letters, 1998, 39, 5305-5308.	1.4	11
77	Formal enantioselective synthesis of (+)-vincamine. The first enantioselective route to (+)-3,14-epivincamine and its enantiomer. Tetrahedron: Asymmetry, 1999, 10, 297-306.	1.8	11
78	11a-N-Tosyl-5-deoxi-pterocarpan (LQB-223), a promising prototype for targeting MDR leukemia cell lines. European Journal of Medicinal Chemistry, 2014, 78, 190-197.	5.5	11
79	The pterocarpanquinone LQB-118 induces apoptosis in acute myeloid leukemia cells of distinct molecular subtypes and targets FoxO3a and FoxM1 transcription factors. International Journal of Oncology, 2014, 45, 1949-1958.	3.3	11
80	Ligand-Free Palladium-Catalyzed Oxyarylation of DihydronaphthalÂenes and Chromenequinone with o-lodophenols and 3-lodolawsone in PEG-400: An Efficient Synthesis of 5-Carbapterocarpans and Pterocarpanquinones. Synthesis, 2015, 47, 3505-3512.	2.3	11
81	Synthesis of N-methylarylnitrones derived from alkyloxybenzaldehydes and antineoplastic effect on human cancer cell lines. Bioorganic and Medicinal Chemistry, 2015, 23, 2053-2061.	3.0	11
82	2,3:4,5-DI- <i>O</i> -Isopropylidene-β-d-Fructopyranose as Chiral Auxiliary in Asymmetric α-Alkylation Of Ester Enolates. Journal of Carbohydrate Chemistry, 1996, 15, 691-699.	1.1	10
83	Insights into the mechanism of Na+,K+-ATPase inhibition by 2-methoxy-3,8,9-trihydroxy coumestan. Bioorganic and Medicinal Chemistry, 2008, 16, 8801-8805.	3.0	10
84	Further evidence that naphthoquinone inhibits Toxoplasma gondii growth in vitro. Parasitology International, 2015, 64, 622-631.	1.3	10
85	Non-competitive inhibitor of nucleoside hydrolase from Leishmania donovani identified by fragment-based drug discovery. RSC Advances, 2016, 6, 87738-87744.	3.6	10
86	Eugenol and safrole as starting materials for the synthesis of 3-alkyl muconic acid mono and dimethyl esters and 4,4-dialkyl butenolides. Tetrahedron Letters, 1985, 26, 4155-4158.	1.4	9
87	The 1,4-addition of organometallic reagents to enoates derived from pinanediol. Tetrahedron: Asymmetry, 2002, 13, 2513-2517.	1.8	9
88	Synergistic interaction between ouabain and 8-methoxy-3,9-dihydroxy coumestan, a non-steroidal synthetic inhibitor of Na+,K+-ATPase. Life Sciences, 2007, 81, 1199-1204.	4.3	9
89	Synthesis of 5â€Carbapterocarpens by αâ€Arylation of Tetralones Followed by Oneâ€Pot Demethylation/Cyclization with BBr ₃ . European Journal of Organic Chemistry, 2014, 2014, 1314-1320.	2.4	9
90	The orally active pterocarpanquinone LQBâ€118 exhibits cytotoxicity in prostate cancer cell and tumor models through cellular redox stress. Prostate, 2018, 78, 140-151.	2.3	9

#	Article	IF	CITATIONS
91	11a-N-tosyl-5-carbapterocarpans: Synthesis, antineoplastic evaluation and in silico prediction of ADMETox properties. Bioorganic Chemistry, 2018, 80, 585-590.	4.1	9
92	Enantioselective electrophilic fluorination of $\hat{I}\pm$ -aryl-tetralones using a preparation of N-fluoroammonium salts of cinchonine. Journal of Fluorine Chemistry, 2019, 217, 72-79.	1.7	9
93	Monocyclic Nitro-heteroaryl Nitrones with Dual Mechanism of Activation: Synthesis and Antileishmanial Activity. ACS Medicinal Chemistry Letters, 2021, 12, 1405-1412.	2.8	9
94	Vanillin (1) As Starting Material for the Synthesis of Isomeric Phthalides. Synthetic Communications, 1988, 18, 1723-1730.	2.1	8
95	Orthobromodiphenylmethane Derivatives as Starting Materials for the Total Synthesis of Anthraquinones. Synthetic Communications, 1996, 26, 4507-4518.	2.1	8
96	CrudeDâ€(+)â€Glyceraldehyde Obtained fromDâ€Mannitolâ€Diacetonide by Oxidative Cleavage with Sodium Periodate: Its Reactions with Nucleophilic Species. Synthetic Communications, 2004, 34, 589-598.	2.1	8
97	BINAP-AgSbF6 vs. BINAP-AgClO4 Complexes as Catalysts for the Enantioselective 1,3-Dipolar Cycloaddition of Azomethine Ylides and Alkenes. Synlett, 2010, 2010, 962-966.	1.8	8
98	5-Carba-pterocarpens: A new scaffold with anti-HCV activity. European Journal of Medicinal Chemistry, 2016, 112, 33-38.	5.5	8
99	Palladium-Catalyzed Oxyarylation, Azaarylation and α-Arylation Reactions in the Synthesis of Bioactive Isoflavonoid Analogues. Current Organic Synthesis, 2015, 12, 772-794.	1.3	8
100	Substâncias enantiomericamente puras (SEP): a questão dos fármacos quirais. Quimica Nova, 1997, 20, 647-656.	0.3	7
101	The Use of Chiral Auxiliaries Prepared from (-)-β-Pinene in Stereoselective Reduction of β-Ketobutyrates. Synthetic Communications, 2000, 30, 455-468.	2.1	7
102	Stereoselective synthesis and preliminary evaluation of new d-3-heteroarylcarbonylalanines as ligands of the NMDA receptor. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 4399-4403.	2.2	7
103	Stereoselective Conjugate Addition of Benzyl Phenylsulfonyl Carbanions to Enoates Derived fromd-Mannitol. Journal of Organic Chemistry, 2004, 69, 4013-4018.	3.2	7
104	In vitro and in vivo antineoplastic and immunological effects of pterocarpanquinone LQB-118. Investigational New Drugs, 2016, 34, 541-551.	2.6	7
105	Anti-inflammatory properties of pterocarpanquinone LQB-118 in mice. Bioorganic and Medicinal Chemistry, 2016, 24, 4415-4423.	3.0	7
106	NFκB Pathway and microRNA-9 and -21 are Involved in Sensitivity to the Pterocarpanquinone LQB-118 in Different CML Cell Lines. Anti-Cancer Agents in Medicinal Chemistry, 2015, 15, 345-352.	1.7	7
107	Regioselective lithiations of a pterocarpan skeleton: the first synthesis of (±)-4′-dehydroxycabenegrin A-I. Tetrahedron Letters, 2001, 42, 4111-4113.	1.4	6
108	Stereoselective Mannich reaction of camphor titanium enolate. Tetrahedron: Asymmetry, 2002, 13, 1157-1159.	1.8	6

#	Article	IF	CITATIONS
109	Reactive Oxygen Species Release, Alkylating Ability, and DNA Interactions of a Pterocarpanquinone: A Test Case for Electrochemistry. ChemElectroChem, 2016, 3, 2252-2263.	3.4	6
110	Second-generation pterocarpanquinones: synthesis and antileishmanial activity. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2018, 24, 35.	1.4	6
111	Synthesis of new α-Aryl-α-tetralones and α-Fluoro-α-aryl-α-tetralones, preliminary antiproliferative evaluation on drug resistant cell lines and in silico prediction of ADMETox properties. Bioorganic Chemistry, 2021, 110, 104790.	4.1	6
112	Synthesis of new chiral auxiliares from carbohydrates for Et2AlCl-promoted Diels-Alder reactions. Journal of the Brazilian Chemical Society, 2000, 11, 266-273.	0.6	5
113	Synthesis of Coumarins and Neoflavones through Zinc Chloride Catalyzed Hydroarylation of Acetylenic Esters with Phenols. Synthesis, 2011, 2011, 3692-3696.	2.3	5
114	Copper- versus palladium-catalyzed aromatization of 2-(methoxycarbonyl) tetralones: synthesis of methyl 1-hydroxy-2-naphthoates. Tetrahedron, 2016, 72, 1897-1902.	1.9	5
115	Theoretical studies and NMR assay of coumarins and neoflavanones derivatives as potential inhibitors of acetylcholinesterase. Computational Biology and Chemistry, 2020, 87, 107293.	2.3	5
116	Solvent effects in the reaction of safrole with bromine Tetrahedron Letters, 1975, 16, 4535-4538.	1.4	4
117	A Convenient Method for the Preparation of 6,7-Methyl-Enedioxy-3-Alkyl-2-Hydroxy-1,4-Naphthoquinones from Natural Safrole and Carboxylic Acids. Synthetic Communications, 1983, 13, 691-699.	2.1	4
118	Piperonal as Starting Material for the Regiospecific and Stereoselective Synthesis of <u>E</u> and <u>Z</u> Isomers of 3-Methyl-2-hexenedioic acid-1-methyl ester. Synthetic Communications, 1991, 21, 703-712.	2.1	4
119	The aldol addition reaction between \hat{i}^3 -oxygenated carboxylic esters derived from 2,6-dimethylphenol and piperonal. Tetrahedron Letters, 1994, 35, 1325-1328.	1.4	4
120	First stereoselective synthesis and assignment of the absolute configuration of the nebracetam eutomer and derivatives. Tetrahedron: Asymmetry, 2008, 19, 1161-1165.	1.8	4
121	Synthesis of 11a-N-Arylsulfonyl-5-carbapterocarpans (Tetrahydro-5H-benzo[a]carbazoles) by Azaarylation of Dihydronaphthalenes with o-lodo-N-(Arylsulfonyl)anilines in Poly(ethylene glycol). Synthesis, 2015, 47, 3013-3019.	2.3	4
122	11a-N-Tosyl-5-deoxi-pterocarpan, LQB-223, a novel compound with potent antineoplastic activity toward breast cancer cells with different phenotypes. Journal of Cancer Research and Clinical Oncology, 2016, 142, 2119-2130.	2.5	4
123	The syn-selective conjugate addition of amines to enoates derived from d-mannitol. Tetrahedron: Asymmetry, 2016, 27, 773-776.	1.8	4
124	Preparative chiral separation and absolute configuration of the synthetic pterocarpanquinone LQBâ€118. Chirality, 2017, 29, 167-171.	2.6	4
125	The pterocarpanquinone LQB‑118 compound induces apoptosis of cytarabine‑resistant acute myeloid leukemia cells. International Journal of Oncology, 2021, 58,	3.3	4
126	Enantioselective Synthesis of Isoflavanones and Pterocarpans through a Ru ^{II} â€Catalyzed ATHâ€DKR of Isoflavones. ChemCatChem, 2021, 13, 5097-5108.	3.7	4

#	Article	IF	CITATIONS
127	On the asymmetric induction involving lithium enolates of 1-menthylpropionate. Tetrahedron: Asymmetry, 1994, 5, 1873-1874.	1.8	3
128	The reaction of safrole derivatives with aluminum chloride: improved procedures for the preparation of catechols or their mono-O-Methylated Derivatives and a mechanistic interpretation. Journal of the Brazilian Chemical Society, 2001, 12, 346-353.	0.6	3
129	Inhibition of the α1β1 Isoform of the Na, K-ATPase by 8-methoxycoumestrol Without Positive Inotropic Effect in Human Myocardium-Novel Aspects of Cardiac Glycoside Pharmacology. Journal of Cardiovascular Pharmacology, 2009, 54, 10-15.	1.9	3
130	Solvent-Free Synthesis of Salen Ligands and Pd(II)– and Cu(II)–Salen Complexes: Their Use in the Oxidation of α-Tetralones to α-Naphthols. Synthesis, 2017, 49, 3998-4006.	2.3	3
131	Synthesis of pterocarpans through palladium-catalyzed oxyarylation of alkoxy-2H-chromenes with o-iodophenols. Tetrahedron, 2020, 76, 131638.	1.9	3
132	New 5-carba-pterocarpans: Synthesis and preliminary antiproliferative activity on a panel of human cancer cells. Bioorganic Chemistry, 2021, 107, 104584.	4.1	3
133	LQB‑118 compound inhibits migration and induces cell death in glioblastoma cells. Oncology Reports, 2020, 43, 346-357.	2.6	3
134	Synthesis of 6, 7-Methylenedioxylapachol. Synthetic Communications, 1991, 21, 713-719.	2.1	2
135	Variable Chemo-selective Electrophilic Attack on Silylated Aromatic Aldehydes. Synlett, 1996, 1996, 783-784.	1.8	2
136	IMPROVED METHOD FOR THE ESTERIFICATION OF SUGAR ACETALS WITH DICYCLOHEXYLCARBODIIMIDE. Organic Preparations and Procedures International, 1999, 31, 689-692.	1.3	2
137	Purification of a synthetic pterocarpanquinone by countercurrent chromatography. Journal of the Brazilian Chemical Society, 2012, 23, 1114-1118.	0.6	2
138	Suzuki-Miyaura Coupling between 3-Iodolawsone and Arylboronic Acids. Synthesis of Lapachol Analogues with Antineoplastic and Antileishmanial Activities. Journal of the Brazilian Chemical Society, 2016, , .	0.6	2
139	The Potent Trypanocidal Effect of LQB303, a Novel Redox-Active Phenyl-Tert-Butyl-Nitrone Derivate That Causes Mitochondrial Collapse in Trypanosoma cruzi. Frontiers in Microbiology, 2021, 12, 617504.	3.5	2
140	Synthesis and Biological Evaluation of Cyclic Analogues from Nitrone LQB-278: A New Potential Antileukemia Compound. Anticancer Research, 2021, 41, 4929-4936.	1.1	2
141	Insights into the Biological Evaluation of Pterocarpanquinones and Carbapterocarpans with Anti-tumor Activity against MDR Leukemias. Anti-Cancer Agents in Medicinal Chemistry, 2019, 19, 29-37.	1.7	2
142	Effects of <scp>antiâ€<i>Leishmania</i></scp> compounds in the behavior of the sand fly vector <i>Lutzomyia longipalpis</i> . Pest Management Science, 2022, 78, 2792-2805.	3.4	2
143	One Pot Large Scale Procedure for the Production of 2-Ethyl- and 2-Butyl-2-carboethoxycyclopentanone from Ethyl Adipate Synthetic Communications, 1997, 27, 4361-4366.	2.1	1
144	NaBH4-MnCl2, FOR IMPROVED REDUCTION OF Î ² -KETO ESTERS ATTACHED TO A CHIRAL AUXILIARY. COMPARISON WITH Zn(BH4)2. Organic Preparations and Procedures International, 2002, 34, 502-507.	1.3	1

#	Article	IF	CITATIONS
145	Configuration assignment of stereogenic centers in a β-pinene derivative by 1H NMR and molecular modeling. Journal of Molecular Structure, 2006, 783, 157-160.	3.6	1
146	Reação entre fenilnitrometanos e enoato derivado do D-manitol na presença de TBAF ou DBU: adição conjugada sin-seletiva e reação de NEF consecutiva. Quimica Nova, 2008, 31, 832-836.	0.3	1
147	Mutagenic and Cytotoxicity LQB 123 Profile: Safety and Tripanocidal Effect of a Phenyl-t-Butylnitrone Derivative. BioMed Research International, 2017, 2017, 1-8.	1.9	1
148	The LQB-223 Compound Modulates Antiapoptotic Proteins and Impairs Breast Cancer Cell Growth and Migration. International Journal of Molecular Sciences, 2019, 20, 5063.	4.1	1
149	Medicinal Electrochemistry of Halogenated and Nitrated Pterocarpanquinones. Journal of the Brazilian Chemical Society, 0, , .	0.6	1
150	The pterocarpanquinone LQB 118 inhibits inflammation triggered by zymosan in vivo and in vitro. International Immunopharmacology, 2020, 83, 106399.	3.8	1
151	Abstract A51: Antineoplastic activity of novel synthetic compound pterocarpanquinone LQB-118 in lung cancer cells. Clinical Cancer Research, 2015, 21, A51-A51.	7.0	1
152	Natural products as starting point for the discovery of new bioactive compounds: Drug candidates with antiophidic, anticancer and antiparasitic properties. Revista Virtual De Quimica, 2009, 1, .	0.4	1
153	Crude D-(+)-Glyceraldehyde Obtained from D-Mannitol-Diacetonide by Oxidative Cleavage with Sodium Periodate: Its Reactions with Nucleophilic Species ChemInform, 2004, 35, no.	0.0	0
154	A new and concise strategy to the enantioselective synthesis of (S)-2-amino-4-oxo-4-(pyridine-2-yl) butanoic acid from aspartic acid. Journal of the Brazilian Chemical Society, 2010, 21, 777-781.	0.6	0
155	Palladium-Catalyzed Arylation of Enoates with Iodobenzene: Stereoselective Synthesis of Trisubstituted Olefins. Journal of the Brazilian Chemical Society, 2013, , .	0.6	0
156	Palladium-Catalyzed α-Arylation of Dimethyl Malonate and Ethyl Cyanoacetate with o-Alkoxybromobenzenes for the Synthesis of Phenylacetic Acid, Esters and Phenylacetonitriles. SynOpen, 2017, 01, 0091-0096.	1.7	0
157	New Palladacycle-Derived Acylhydrazones as Pre-catalysts in Mirozoki-Heck Coupling and Oxyarylations. Anais Da Academia Brasileira De Ciencias, 2018, 90, 1273-1278.	0.8	0
158	Palladium catalyzed Heck-lactonization from orthoiodophenols and enoates: Synthesis of coumarins and the study of the mechanism by electrospray ionization mass spectrometry. , 0, , .		0
159	Coumarins and Neoflavones: Synthesis and HCV NS5B Polymerase Inhibition. , 0, , .		0
160	Synthesis of (-),6,6-(Ethylenedioxy)-1,10-Dimethyl-1(9)-Octal-2-one. Journal of the Brazilian Chemical Society, 1996, 7, 269-271.	0.6	0
161	Abstract A49: Efficiency of 11a-N-tosyl-5-deoxi-pterocarpan (LQB-223) in a panel of myeloid leukemia cell lines with different chemoresistance backgrounds. , 2015, , .		0
162	The Isoflavanoid (+)â€PTC Regulates Cell ycle Progression and Mitotic Spindle Assembly in a Prostate Cancer Cell Line. Chemistry and Biodiversity, 2022, , .	2.1	0