Juan Pedro GarcÃ-a Villaluenga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2174670/publications.pdf

Version: 2024-02-01

44 papers

1,216 citations

394421 19 h-index 377865 34 g-index

45 all docs

45 docs citations

45 times ranked

1420 citing authors

#	Article	IF	Citations
1	Cooperative kinetics of ligand binding to linear polymers. Computational and Structural Biotechnology Journal, 2022, 20, 521-533.	4.1	3
2	Noncooperative thermodynamics and kinetic models of ligand binding to polymers: Connecting McGhee–von Hippel model with the Tonks gas model. Physical Review E, 2020, 102, 012407.	2.1	6
3	Electro-Osmotic Behavior of Polymeric Cation-Exchange Membranes in Ethanol-Water Solutions. Entropy, 2020, 22, 692.	2.2	0
4	Reliability of rectified transport: Coherence and reproducibility of transport by open-loop and feedback-controlled Brownian ratchets. Physical Review E, 2018, 98, .	2.1	4
5	Mechanics, thermodynamics, and kinetics of ligand binding to biopolymers. PLoS ONE, 2017, 12, e0174830.	2.5	20
6	Estimation of the temperature of a radiating body by measuring the stationary temperatures of a thermometer placed at different distances. European Journal of Physics, 2016, 37, 045104.	0.6	1
7	Experimental determination of the streaming potential across cation-exchange membranes with different morphologies. Journal of Membrane Science, 2016, 500, 16-24.	8.2	10
8	Optimal protocol for a collective flashing ratchet. Europhysics Letters, 2014, 107, 10006.	2.0	5
9	A non-equilibrium thermodynamics model of multicomponent mass and heat transport in pervaporation processes. Journal of Non-Equilibrium Thermodynamics, 2012, 37, .	4.2	7
10	Water uptake and salt transport through Nafion cation-exchange membranes with different thicknesses. Chemical Engineering Science, 2012, 72, 1-9.	3.8	50
11	Methanol-Water Solution Transport in Nafion Membranes with Different Cationic Forms. Separation Science and Technology, 2011, 46, 944-949.	2.5	3
12	Liquid transport through sulfonated cation-exchange membranes for different water–alcohol solutions. Chemical Engineering Journal, 2010, 162, 643-648.	12.7	14
13	Fluid flow modeling in a sulfonated cationâ€exchange membrane. Journal of Applied Polymer Science, 2009, 114, 1412-1416.	2.6	1
14	Study of the activation energy for transport of water and methanol through a Nafion membrane. Chemical Engineering Journal, 2009, 152, 20-25.	12.7	21
15	Experimental estimation of equilibrium and transport properties of sulfonated cation-exchange membranes with different morphologies. Journal of Colloid and Interface Science, 2009, 333, 497-502.	9.4	13
16	Salt diffusion through cation-exchange membranes in alcohol–water solutions. Separation and Purification Technology, 2009, 64, 321-325.	7.9	7
17	Study of the Internal Morphology of Cation-Exchange Membranes by Means of Electroosmotic Permeability Relaxations. Journal of Physical Chemistry B, 2009, 113, 12952-12957.	2.6	2
18	Swelling and electro-osmotic properties of cation-exchange membranes with different structures in methanol–water media. Journal of Power Sources, 2008, 185, 822-827.	7.8	17

#	Article	IF	CITATIONS
19	Comparative study of liquid uptake and permeation characteristics of sulfonated cation-exchange membranes in water and methanol. Journal of Membrane Science, 2008, 323, 421-427.	8.2	24
20	Millable Polyurethane/Organoclay Nanocomposites: Preparation, Characterization, and Properties. Journal of Nanoscience and Nanotechnology, 2007, 7, 634-640.	0.9	8
21	Gas transport properties of polypropylene/clay composite membranes. European Polymer Journal, 2007, 43, 1132-1143.	5.4	118
22	Gas permeation characteristics of heterogeneous ODPA–BIS P polyimide membranes at different temperatures. Journal of Membrane Science, 2007, 305, 160-168.	8.2	21
23	Poly(2,6-dimethyl-1,4-phenylene oxide) mixed matrix pervaporation membranes. Desalination, 2006, 200, 376-378.	8.2	4
24	Sorption and permeation of solutions of chloride salts, water and methanol in a Nafion membrane. Electrochimica Acta, 2006, 51, 6297-6303.	5.2	28
25	Water and methanol transport in Nafion membranes with different cationic forms. Journal of Power Sources, 2006, 160, 181-186.	7.8	29
26	Thermo-osmosis of mixtures of water and methanol through a Nafion membrane. Journal of Membrane Science, 2006, 274, 116-122.	8.2	54
27	Analysis of the membrane thickness effect on the pervaporation separation of methanol/methyl tertiary butyl ether mixtures. Separation and Purification Technology, 2005, 47, 80-87.	7.9	37
28	Numerical model of non-isothermal pervaporation in a rectangular channel. Journal of Membrane Science, 2005, 260, 119-130.	8.2	22
29	Filled poly(2,6-dimethyl-1,4-phenylene oxide) dense membranes by silica and silane modified silica nanoparticles: characterization and application in pervaporation. Polymer, 2005, 46, 9881-9891.	3.8	85
30	Simultaneous electroosmotic and permeation flows through a Nafion membrane. Journal of Colloid and Interface Science, 2005, 288, 540-547.	9.4	4
31	Simultaneous electroosmotic and permeation flows through a Nafion membrane. Journal of Colloid and Interface Science, 2004, 277, 176-183.	9.4	11
32	Preparation and application of dense poly(phenylene oxide) membranes in pervaporation. Journal of Colloid and Interface Science, 2004, 278, 410-422.	9.4	77
33	On the methanol–water electroosmotic transport in a Nafion membrane. Journal of Membrane Science, 2004, 236, 109-120.	8.2	26
34	Transport of methanol and water through Nafion membranes. Journal of Power Sources, 2004, 130, 22-29.	7.8	50
35	Pervaporation of Alcohols and Methyltert-Butyl Ether through a Dense Poly(2,6-dimethyl-1,4-phenylene oxide) Membrane. Industrial & Engineering Chemistry Research, 2004, 43, 2548-2555.	3.7	19
36	Osmotic behavior of a Nafion membrane in methanol–water electrolyte solutions. Journal of Colloid and Interface Science, 2003, 263, 217-222.	9.4	8

#	Article	IF	CITATIONS
37	Permeation of electrolyte water–methanol solutions through a Nafion membrane. Journal of Colloid and Interface Science, 2003, 268, 476-481.	9.4	28
38	Pervaporation of Toluene/Alcohol Mixtures through a Coextruded Linear Low-Density Polyethylene Membrane. Industrial & Description of the Membrane. Industrial & Description of the Membrane of the Membrane of the Membrane of Toluene (Alcohol Mixtures through a Coextruded Linear Low-Density Polyethylene of the Membrane of Toluene (Alcohol Mixtures through a Coextruded Linear Low-Density Polyethylene of the Membrane of Toluene (Alcohol Mixtures through a Coextruded Linear Low-Density Polyethylene of the Membrane of Toluene (Alcohol Mixtures through a Coextruded Linear Low-Density Polyethylene of the Membrane of Toluene (Alcohol Mixtures through a Coextruded Linear Low-Density Polyethylene of the Membrane of Toluene (Alcohol Mixtures through a Coextruded Linear Low-Density Polyethylene of the Membrane of Toluene (Alcohol Mixtures through a Coextruded Linear Low-Density Polyethylene of the Membrane of Toluene (Alcohol Mixtures through a Coextruded Linear Low-Density Polyethylene of the Membrane of Toluene (Alcohol Mixtures through a Coextruded Linear Low-Density Polyethylene of the Mixtures (Alcohol Mixtures through a Coextruded Linear Li	3.7	25
39	Annealing-Induced Enhancement of the Gas Diffusivity in Coextruded LLDPE Films Investigated by Positron Lifetime Spectroscopy. Macromolecules, 2002, 35, 8088-8092.	4.8	8
40	Experimental estimation of gas-transport properties of linear low-density polyethylene membranes by an integral permeation method. Journal of Applied Polymer Science, 2001, 82, 3013-3021.	2.6	22
41	Permeation of carbon dioxide through multiple linear low-density polyethylene films. European Polymer Journal, 2000, 36, 1697-1702.	5.4	6
42	A review on the separation of benzene/cyclohexane mixtures by pervaporation processes. Journal of Membrane Science, 2000, 169, 159-174.	8.2	283
43	Diffusional characteristics of coextruded linear low-density polyethylenes prepared from different conditions of processing. Journal of Applied Polymer Science, 1998, 70, 23-37.	2.6	13
44	Influence of drawing on gas transport mechanism in LLDPE films. Polymer, 1998, 39, 3955-3965.	3.8	18