
Matthew J Smalley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2174358/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reproductive history determines <i>Erb b 2</i> locus amplification, WNT signalling and tumour phenotype in a murine breast cancer model. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	3
2	Immune Remodeling of the Extracellular Matrix Drives Loss of Cancer Stem Cells and Tumor Rejection. Cancer Immunology Research, 2020, 8, 1520-1531.	1.6	16
3	Integrating single-cell RNA-sequencing and functional assays to decipher mammary cell states and lineage hierarchies. Npj Breast Cancer, 2020, 6, 32.	2.3	8
4	The PI3K-AKT-mTOR Pathway and Prostate Cancer: At the Crossroads of AR, MAPK, and WNT Signaling. International Journal of Molecular Sciences, 2020, 21, 4507.	1.8	289
5	APC2 is critical for ovarian WNT signalling control, fertility and tumour suppression. BMC Cancer, 2019, 19, 677.	1.1	21
6	Rapid activation of epithelial-mesenchymal transition drives PARP inhibitor resistance in <i>Brca2</i> -mutant mammary tumours. Oncotarget, 2019, 10, 2586-2606.	0.8	22
7	Identification of <i>Pik3ca</i> Mutation as a Genetic Driver of Prostate Cancer That Cooperates with <i>Pten</i> Loss to Accelerate Progression and Castration-Resistant Growth. Cancer Discovery, 2018, 8, 764-779.	7.7	72
8	Dual Mechanisms of LYN Kinase Dysregulation Drive Aggressive Behavior in Breast Cancer Cells. Cell Reports, 2018, 25, 3674-3692.e10.	2.9	43
9	Receptor protein tyrosine phosphatase PTPRB negatively regulates FGF2-dependent branching morphogenesis. Development (Cambridge), 2017, 144, 3777-3788.	1.2	15
10	PTEN loss and activation of K-RAS and \hat{l}^2 -catenin cooperate to accelerate prostate tumourigenesis. Journal of Pathology, 2017, 243, 442-456.	2.1	23
11	PRMT5 Is a Critical Regulator of Breast Cancer Stem Cell Function via Histone Methylation and FOXP1 Expression. Cell Reports, 2017, 21, 3498-3513.	2.9	138
12	See One, Do One, Teach One: A Practical Course on Methods in Mammary Gland Biology. Journal of Mammary Gland Biology and Neoplasia, 2017, 22, 215-219.	1.0	0
13	Wnt and Neuregulin1/ErbB signalling extends 3D culture of hormone responsive mammary organoids. Nature Communications, 2016, 7, 13207.	5.8	88
14	Modelling the tumour microenvironment in long-term microencapsulated 3D co-cultures recapitulates phenotypic features of disease progression. Biomaterials, 2016, 78, 50-61.	5.7	99
15	Runx2 contributes to the regenerative potential of the mammary epithelium. Scientific Reports, 2015, 5, 15658.	1.6	30
16	Overview of Genetically Engineered Mouse Models of Breast Cancer Used in Translational Biology and Drug Development. Current Protocols in Pharmacology, 2015, 70, 14.36.1-14.36.14.	4.0	13
17	Mouse mammary stem cells express prognostic markers for triple-negative breast cancer. Breast Cancer Research, 2015, 17, 31.	2.2	35
18	Wholeâ€exome <scp>DNA</scp> sequence analysis of <i>Brca2</i> ―and <i>Trp53</i> â€deficient mouse mammary gland tumours. Journal of Pathology, 2015, 236, 186-200.	2.1	14

MATTHEW J SMALLEY

#	Article	IF	CITATIONS
19	ERrrr…Where are the Progenitors? Hormone Receptors and Mammary Cell Heterogeneity. Journal of Mammary Gland Biology and Neoplasia, 2015, 20, 63-73.	1.0	17
20	Annexin A8 Identifies a Subpopulation of Transiently Quiescent c-Kit Positive Luminal Progenitor Cells of the Ductal Mammary Epithelium. PLoS ONE, 2015, 10, e0119718.	1.1	13
21	Developmental Programming Mediated by Complementary Roles of Imprinted Grb10 in Mother and Pup. PLoS Biology, 2014, 12, e1001799.	2.6	49
22	Identification of cellular and genetic drivers of breast cancer heterogeneity in genetically engineered mouse tumour models. Journal of Pathology, 2014, 233, 124-137.	2.1	47
23	Embryonic mammary signature subsets are activated in Brca1 -/- and basal-like breast cancers. Breast Cancer Research, 2013, 15, R25.	2.2	52
24	Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer. Breast Cancer Research, 2013, 15, R92.	2.2	320
25	Aurora A Kinase Regulates Mammary Epithelial Cell Fate by Determining Mitotic Spindle Orientation in a Notch-Dependent Manner. Cell Reports, 2013, 4, 110-123.	2.9	59
26	Breast cancer stem cells: Obstacles to therapy. Cancer Letters, 2013, 338, 57-62.	3.2	61
27	Met signaling regulates growth, repopulating potential and basal cell-fate commitment of mammary luminal progenitors: implications for basal-like breast cancer. Oncogene, 2013, 32, 1428-1440.	2.6	53
28	Protein tyrosine phosphatase 1B restrains mammary alveologenesis and secretory differentiation. Development (Cambridge), 2013, 140, 117-125.	1.2	9
29	c-Kit is required for growth and survival of the cells of origin of Brca1-mutation-associated breast cancer. Oncogene, 2012, 31, 869-883.	2.6	92
30	Slugging their way to immortality: driving mammary epithelial cells into a stem cell-like state. Breast Cancer Research, 2012, 14, 319.	2.2	4
31	Who do they think they are? Wnt-responsive cells reveal their family trees. Breast Cancer Research, 2012, 14, 327.	2.2	Ο
32	Isolation of Mouse Mammary Epithelial Subpopulations: A Comparison of Leading Methods. Journal of Mammary Gland Biology and Neoplasia, 2012, 17, 91-97.	1.0	65
33	Mig6 Is a Sensor of EGF Receptor Inactivation that Directly Activates c-Abl to Induce Apoptosis during Epithelial Homeostasis. Developmental Cell, 2012, 23, 547-559.	3.1	47
34	Transcriptome analysis of embryonic mammary cells reveals insights into mammary lineage establishment. Breast Cancer Research, 2011, 13, R79.	2.2	46
35	The Cell of Origin of BRCA1 Mutation-associated Breast Cancer: A Cautionary Tale of Gene Expression Profiling. Journal of Mammary Cland Biology and Neoplasia, 2011, 16, 51-55.	1.0	41
36	A tissue reconstitution model to study cancer cellâ€intrinsic and â€extrinsic factors in mammary tumourigenesis. Journal of Pathology, 2010, 220, 34-44.	2.1	13

MATTHEW J SMALLEY

#	Article	IF	CITATIONS
37	TSC-22D1 isoforms have opposing roles in mammary epithelial cell survival. Cell Death and Differentiation, 2010, 17, 304-315.	5.0	9
38	BRCA1 Basal-like Breast Cancers Originate from Luminal Epithelial Progenitors and Not from Basal Stem Cells. Cell Stem Cell, 2010, 7, 403-417.	5.2	643
39	Isolation, Culture and Analysis of Mouse Mammary Epithelial Cells. Methods in Molecular Biology, 2010, 633, 139-170.	0.4	71
40	Identification of differentially expressed sense and antisense transcript pairs in breast epithelial tissues. BMC Genomics, 2009, 10, 324.	1.2	28
41	Separating Stem Cells by Flow Cytometry: Reducing Variability for Solid Tissues. Cell Stem Cell, 2009, 5, 579-583.	5.2	58
42	Pregnancy in the mature adult mouse does not alter the proportion of mammary epithelial stem/progenitor cells. Breast Cancer Research, 2009, 11, R20.	2.2	44
43	Alphaâ€6 integrin is necessary for the tumourigenicity of a stem cellâ€like subpopulation within the MCF7 breast cancer cell line. International Journal of Cancer, 2008, 122, 298-304.	2.3	187
44	BRCA1 and stem cells: tumour typecasting. Nature Cell Biology, 2008, 10, 377-379.	4.6	18
45	Transcriptome analysis of mammary epithelial subpopulations identifies novel determinants of lineage commitment and cell fate. BMC Genomics, 2008, 9, 591.	1.2	151
46	Highway to heaven: mammary gland development and differentiation. Breast Cancer Research, 2008, 10, 305.	2.2	6
47	The future of mammary stem cell biology: the power of in vivo transplants. Breast Cancer Research, 2008, 10, 402; author reply 403.	2.2	15
48	Pregnancy and the risk of breast cancer. Endocrine-Related Cancer, 2007, 14, 907-933.	1.6	183
49	Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. Journal of Cell Biology, 2007, 176, 19-26.	2.3	285
50	Regulator of G-protein signalling 2 mRNA is differentially expressed in mammary epithelial subpopulations and over-expressed in the majority of breast cancers. Breast Cancer Research, 2007, 9, R85.	2.2	24
51	Common Molecular Mechanisms of Mammary Gland Development and Breast Cancer. Cellular and Molecular Life Sciences, 2007, 64, 3248-3260.	2.4	50
52	Prospective Isolation and Functional Analysis of Stem and Differentiated Cells from the Mouse Mammary Gland. Stem Cell Reviews and Reports, 2007, 3, 124-136.	5.6	21
53	Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. Journal of Experimental Medicine, 2007, 204, i1-i1.	4.2	0
54	The Mammary Gland "Side Populationâ€: A Putative Stem/Progenitor Cell Marker?. Journal of Mammary Gland Biology and Neoplasia, 2005, 10, 37-47.	1.0	101

MATTHEW J SMALLEY

#	Article	IF	CITATIONS
55	Dishevelled (Dvl-2) activates canonical Wnt signalling in the absence of cytoplasmic puncta. Journal of Cell Science, 2005, 118, 5279-5289.	1.2	70
56	An improved definition of mouse mammary epithelial side population cells. Cytotherapy, 2005, 7, 497-508.	0.3	9
57	CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Research, 2005, 8, R7.	2.2	272
58	A divergent canonical WNT-signaling pathway regulates microtubule dynamics. Journal of Cell Biology, 2004, 164, 243-253.	2.3	193
59	Stem cells and breast cancer: A field in transit. Nature Reviews Cancer, 2003, 3, 832-844.	12.8	331
60	Identification of the Axin and Frat Binding Region of Glycogen Synthase Kinase-3. Journal of Biological Chemistry, 2002, 277, 2176-2185.	1.6	112
61	Functional and molecular characterisation of mammary side population cells. Breast Cancer Research, 2002, 5, R1-8.	2.2	212
62	Wnt signaling and mammary tumorigenesis. Journal of Mammary Gland Biology and Neoplasia, 2001, 6, 37-52.	1.0	63
63	IMMORTALIZATION OF HUMAN HEPATOCYTES BY TEMPERATURE-SENSITIVE SV40 LARGE-T ANTIGEN. In Vitro Cellular and Developmental Biology - Animal, 2001, 37, 166.	0.7	20
64	Sequence variants of the axin gene in breast, colon, and other cancers: An analysis of mutations that interfere with GSK3 binding. Genes Chromosomes and Cancer, 2000, 28, 443-453.	1.5	137
65	Wnt/Shh interactions regulate ectodermal boundary formation during mammalian tooth development. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 4520-4524.	3.3	145
66	Sequence variants of the axin gene in breast, colon, and other cancers: An analysis of mutations that interfere with GSK3 binding. Genes Chromosomes and Cancer, 2000, 28, 443-453.	1.5	4
67	Differentiation of Separated Mouse Mammary Luminal Epithelial and Myoepithelial Cells Cultured on EHS Matrix Analyzed by Indirect Immunofluorescence of Cytoskeletal Antigens. Journal of Histochemistry and Cytochemistry, 1999, 47, 1513-1524.	1.3	56
68	Wnt signalling in mammalian development and cancer. , 1999, 18, 215-230.		191
69	Interaction of Axin and Dvl-2 proteins regulates Dvl-2-stimulated TCF-dependent transcription. EMBO Journal, 1999, 18, 2823-2835.	3.5	226
70	Clonal characterization of mouse mammary luminal epithelial and myoepithelial cells separated by fluorescence-activated cell sorting. In Vitro Cellular and Developmental Biology - Animal, 1998, 34, 711-721.	0.7	69