
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/217403/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of information and communication technology and financial development in shaping a low-carbon environment: a Belt and Road journey toward development. Information Technology for Development, 2023, 29, 83-102.	2.7	13
2	A controversy on the three fundamental growth determinants in selected CEE countries. Environmental Science and Pollution Research, 2022, 29, 19185-19198.	2.7	4
3	The physiological function and molecular mechanism of hydrogen sulfide resisting abiotic stress in plants. Revista Brasileira De Botanica, 2022, 45, 563-572.	0.5	7
4	Recognizing the Basics of Phytochrome-Interacting Factors in Plants for Abiotic Stress Tolerance. Plant Stress, 2022, 3, 100050.	2.7	11
5	Biochar Optimizes Wheat Quality, Yield, and Nitrogen Acquisition in Low Fertile Calcareous Soil Treated With Organic and Mineral Nitrogen Fertilizers. Frontiers in Plant Science, 2022, 13, 879788.	1.7	10
6	Structural insights of catalytic mechanism in mutant pyrazinamidase of <i>Mycobacterium tuberculosis</i> . Journal of Biomolecular Structure and Dynamics, 2021, 39, 1-14.	2.0	5
7	Targeting salt stress coping mechanisms for stress tolerance in Brassica: A research perspective. Plant Physiology and Biochemistry, 2021, 158, 53-64.	2.8	51
8	Influence of semi-arid environment on radiation use efficiency and other growth attributes of lentil crop. Environmental Science and Pollution Research, 2021, 28, 13697-13711.	2.7	28
9	Effects of the nitrification inhibitor nitrapyrin and mulch on N2O emission and fertilizer use efficiency using 15N tracing techniques. Science of the Total Environment, 2021, 757, 143739.	3.9	21
10	Negative impact of longâ€ŧerm exposure of salinity and drought stress on native <i>Tetraena mandavillei</i> L Physiologia Plantarum, 2021, 172, 1336-1351.	2.6	78
11	Effectiveness of Herbicide to Control Rice Weeds in Diverse Saline Environments. Sustainability, 2021, 13, 2053.	1.6	9
12	The effects of research and development and financial development on CO2 emissions: evidence from selected WAME economies. Environmental Science and Pollution Research, 2021, 28, 51149-51159.	2.7	57
13	Adaptation of functional traits and their plasticity of three ornamental trees growing in urban environment. Scientia Horticulturae, 2021, 286, 110248.	1.7	15
14	Nexus Between Financial Development, FDI, Globalization, Energy Consumption and Environment: Evidence From BRI Countries. Frontiers in Energy Research, 2021, 9, .	1.2	18
15	Heavy metals immobilization and improvement in maize (Zea mays L.) growth amended with biochar and compost. Scientific Reports, 2021, 11, 18416.	1.6	64
16	Turf performance and physiological responses of native <i>Poa</i> species to summer stress in Northeast China. PeerJ, 2021, 9, e12252.	0.9	7
17	Nitrogen assimilation and gene regulation of two Kentucky bluegrass cultivars differing in response to nitrate supply. Scientia Horticulturae, 2021, 288, 110315.	1.7	7
18	Antimicrobial, antioxidant and cytotoxic properties of Chenopodium glaucum L PLoS ONE, 2021, 16, e0255502.	1.1	8

#	Article	IF	CITATIONS
19	Relationship between the Chemical Composition and the Biological Functions of Coffee. Molecules, 2021, 26, 7634.	1.7	30
20	Developing the first halophytic turfgrasses for the urban landscape from native Arabian desert grass. Environmental Science and Pollution Research, 2020, 27, 39702-39716.	2.7	23
21	The role of financial development and globalization in the environment: Accounting ecological footprint indicators for selected one-belt-one-road initiative countries. Journal of Cleaner Production, 2020, 250, 119518.	4.6	326
22	Quantitative leaf anatomy and photophysiology systems of C3 and C4 turfgrasses in response to shading. Scientia Horticulturae, 2020, 274, 109674.	1.7	24
23	Coupling Phosphate-Solubilizing Bacteria with Phosphorus Supplements Improve Maize Phosphorus Acquisition and Growth under Lime Induced Salinity Stress. Plants, 2020, 9, 900.	1.6	143
24	Transport CO2 emissions, drivers, and mitigation: an empirical investigation in India. Air Quality, Atmosphere and Health, 2020, 13, 1367-1374.	1.5	55
25	Beneficial Effects of Mixing Kentucky Bluegrass With Red Fescue via Plant-Soil Interactions in Black Soil of Northeast China. Frontiers in Microbiology, 2020, 11, 556118.	1.5	7
26	Phosphorus Nutrient Management through Synchronization of Application Methods and Rates in Wheat and Maize Crops. Plants, 2020, 9, 1389.	1.6	45
27	Potential influential economic indicators and environmental quality: insights from the MERCOSUR economies. Air Quality, Atmosphere and Health, 2020, 13, 751-762.	1.5	9
28	Determining nitrogen isotopes discrimination under drought stress on enzymatic activities, nitrogen isotope abundance and water contents of Kentucky bluegrass. Scientific Reports, 2020, 10, 6415.	1.6	38
29	Morpho-physiological traits, biochemical response and phytoextraction potential of short-term copper stress on kenaf (<i>Hibiscus cannabinus</i> L.) seedlings. PeerJ, 2020, 8, e8321.	0.9	70
30	Managing Tillage Operation and Manure to Restore Soil Carbon Stocks in Wheat–Maize Cropping System. Agronomy Journal, 2019, 111, 2600-2609.	0.9	23
31	Substituting urea by organic wastes for improving maize yield in alkaline soil. Journal of Plant Nutrition, 2019, 42, 2423-2434.	0.9	24
32	Nexus between financial development, energy consumption, income level, and ecological footprint in CEE countries: do human capital and biocapacity matter?. Environmental Science and Pollution Research, 2019, 26, 31856-31872.	2.7	101
33	Identification of chicken meat quality via rapid array isoelectric focusing with extraction of hemoglobin and myoglobin in meat sample. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2019, 1128, 121790.	1.2	7
34	Alleviation of chromium toxicity in maize by Fe fortification and chromium tolerant ACC deaminase producing plant growth promoting rhizobacteria. Ecotoxicology and Environmental Safety, 2019, 185, 109706.	2.9	93
35	Integration of poultry manure and phosphate solubilizing bacteria improved availability of Ca bound P in calcareous soils. 3 Biotech, 2019, 9, 368.	1.1	35
36	Does information and communication technologies improve environmental quality in the era of globalization? An empirical analysis. Environmental Science and Pollution Research, 2019, 26, 8594-8608.	2.7	192

#	Article	IF	CITATIONS
37	The nexus between financial development, globalization, and environmental degradation: Fresh evidence from Central and Eastern European Countries. Environmental Science and Pollution Research, 2019, 26, 24733-24747.	2.7	74
38	The impact of globalization and financial development on environmental quality: evidence from selected countries in the Organization for Economic Co-operation and Development (OECD). Environmental Science and Pollution Research, 2019, 26, 13246-13262.	2.7	204
39	lsoelectric focusing array with immobilized pH gradient and dynamic scanning imaging for diabetes diagnosis. Analytica Chimica Acta, 2019, 1063, 178-186.	2.6	11
40	Suppressing photorespiration for the improvement in photosynthesis and crop yields: A review on the role of S-allantoin as a nitrogen source. Journal of Environmental Management, 2019, 237, 644-651.	3.8	19
41	The nexus between financial development, income level, and environment in Central and Eastern European Countries: a perspective on Belt and Road Initiative. Environmental Science and Pollution Research, 2019, 26, 16053-16075.	2.7	88
42	The Landscape of Protein Tyrosine Phosphatase (Shp2) and Cancer. Current Pharmaceutical Design, 2019, 24, 3767-3777.	0.9	38
43	Plant Growth and Morphological Changes in Rice Under Abiotic Stress. , 2019, , 69-85.		48
44	Morphological acclimation to agronomic manipulation in leaf dispersion and orientation to promote "Ideotype―breeding: Evidence from 3D visual modeling of "super―rice (Oryza sativa L.). Plant Physiology and Biochemistry, 2019, 135, 499-510.	2.8	32
45	Impact of financial development and economic growth on environmental quality: an empirical analysis from Belt and Road Initiative (BRI) countries. Environmental Science and Pollution Research, 2019, 26, 2253-2269.	2.7	191
46	Major Constraints for Global Rice Production. , 2019, , 1-22.		35
47	Rice Responses and Tolerance to High Temperature. , 2019, , 201-224.		77
48	Rice Responses and Tolerance to Metal/Metalloid Toxicity. , 2019, , 299-312.		61
49	Abiotic Stress and Rice Grain Quality. , 2019, , 571-583.		33
50	Application of CSM-CROPGRO-Cotton model for cultivars and optimum planting dates: Evaluation in changing semi-arid climate. Field Crops Research, 2019, 238, 139-152.	2.3	67
51	Consequences of high temperature under changing climate optima for rice pollen characteristics-concepts and perspectives. Archives of Agronomy and Soil Science, 2018, 64, 1473-1488.	1.3	126
52	The nexus between energy consumption and financial development: estimating the role of globalization in Next-11 countries. Environmental Science and Pollution Research, 2018, 25, 18651-18661.	2.7	137
53	Regional climate assessment of precipitation and temperature in Southern Punjab (Pakistan) using SimCLIM climate model for different temporal scales. Theoretical and Applied Climatology, 2018, 131, 121-131.	1.3	57
54	The effect of ICT on CO2 emissions in emerging economies: does the level of income matters?. Environmental Science and Pollution Research, 2018, 25, 22850-22860.	2.7	238

#	Article	IF	CITATIONS
55	Evaluation and analysis of temperature for historical (1996–2015) and projected (2030–2060) climates in Pakistan using SimCLIM climate model: Ensemble application. Atmospheric Research, 2018, 213, 422-436.	1.8	47
56	An empirical analysis of financial development and energy demand: establishing the role of globalization. Environmental Science and Pollution Research, 2018, 25, 24326-24337.	2.7	81
57	Optimizing the phosphorus use in cotton by using CSM-CROPGRO-cotton model for semi-arid climate of Vehari-Punjab, Pakistan. Environmental Science and Pollution Research, 2017, 24, 5811-5823.	2.7	67
58	Bacillus safensis with plant-derived smoke stimulates rice growth under saline conditions. Environmental Science and Pollution Research, 2017, 24, 23850-23863.	2.7	22
59	Allelopathic Influence of Sesame and Green Gram Intercrops on Cotton in a Replacement Series. Clean - Soil, Air, Water, 2017, 45, .	0.7	4
60	Effects of Nitrogen Supply on Water Stress and Recovery Mechanisms in Kentucky Bluegrass Plants. Frontiers in Plant Science, 2017, 8, 983.	1.7	143
61	Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Frontiers in Plant Science, 2017, 8, 1147.	1.7	1,518
62	Exogenously Applied Plant Growth Regulators Enhance the Morpho-Physiological Growth and Yield of Rice under High Temperature. Frontiers in Plant Science, 2016, 7, 1250.	1.7	193
63	Silicate application increases the photosynthesis and its associated metabolic activities in Kentucky bluegrass under drought stress and post-drought recovery. Environmental Science and Pollution Research, 2016, 23, 17647-17655.	2.7	93
64	A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiology and Biochemistry, 2016, 103, 191-198.	2.8	256
65	Correlation studies on nitrogen for sunflower crop across the agroclimatic variability. Environmental Science and Pollution Research, 2016, 23, 3658-3670.	2.7	42
66	Responses of Rapid Viscoanalyzer Profile and Other Rice Grain Qualities to Exogenously Applied Plant Growth Regulators under High Day and High Night Temperatures. PLoS ONE, 2016, 11, e0159590.	1.1	150
67	Effects of tire rubber ash and zinc sulfate on crop productivity and cadmium accumulation in five rice cultivars under field conditions. Environmental Science and Pollution Research, 2015, 22, 12424-12434.	2.7	58
68	Weed growth and crop yield loss in wheat as influenced by row spacing and weed emergence times. Crop Protection, 2015, 71, 101-108.	1.0	82
69	Grain Cadmium and Zinc Concentrations in Maize Influenced by Genotypic Variations and Zinc Fertilization. Clean - Soil, Air, Water, 2015, 43, 1433-1440.	0.7	53
70	Rice Pest Management and Biological Control. Sustainable Agriculture Reviews, 2015, , 85-106.	0.6	20
71	A biochar application protects rice pollen from high-temperature stress. Plant Physiology and Biochemistry, 2015, 96, 281-287.	2.8	170
72	Phytohormones and plant responses to salinity stress: a review. Plant Growth Regulation, 2015, 75, 391-404.	1.8	566

#	Article	IF	CITATIONS
73	Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environmental Science and Pollution Research, 2015, 22, 4907-4921.	2.7	459
74	Silicon Application Increases Drought Tolerance of Kentucky Bluegrass by Improving Plant Water Relations and Morphophysiological Functions. Scientific World Journal, The, 2014, 2014, 1-10.	0.8	143
75	Exploring Suitability of Salsola imbricata (Fetid Saltwort) for Salinity and Drought Conditions: A Step Toward Sustainable Landscaping Under Changing Climate. Frontiers in Plant Science, 0, 13, .	1.7	4