M Filipa Ribeiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2173748/publications.pdf

Version: 2024-02-01

179 179 179 5024 all docs docs citations times ranked citing authors

59

g-index

#	Article	IF	CITATIONS
1	Conversion of glycerol over vanadium supported beta zeolite: Role of acidity and alkali cations. Microporous and Mesoporous Materials, 2022, 329, 111536.	4.4	8
2	Renewable bio-based routes to \hat{I}^3 -valerolactone in the presence of hafnium nanocrystalline or hierarchical microcrystalline zeotype catalysts. Journal of Catalysis, 2022, 406, 56-71.	6.2	11
3	Catalytic isomerization of d-glucose to d-fructose over BEA base zeotypes using different energy supply methods. Catalysis Today, 2021, 362, 162-174.	4.4	17
4	Synthesis of modified TiO2-based catalysts for the photocatalytic production of solar fuels from synthesis gas. Catalysis Today, 2021, 379, 272-284.	4.4	2
5	Amination of Cyclohexanol over a Niâ€Based Catalyst – Part II: Catalyst Stability and Reaction Patl Chemical Engineering and Technology, 2021, 44, 395-404.	hway.	2
6	Commercial catalysts screening for the direct amination of cyclohexanol. Journal of Industrial and Engineering Chemistry, 2021, 95, 190-202.	5.8	4
7	Statistical modelling of the amination reaction of cyclohexanol to produce cyclohexylamine over a commercial Ni-based catalyst. Chemical Engineering Research and Design, 2021, 170, 189-200.	5.6	1
8	Blending Wastes of Marble Powder and Dolomite Sorbents for Calcium-Looping CO2 Capture under Realistic Industrial Calcination Conditions. Materials, 2021, 14, 4379.	2.9	13
9	Bio-oils/FCC co-processing: Insights into the adsorption of guaiacol on Y zeolites with distinct acidity and textural properties. Microporous and Mesoporous Materials, 2021, 323, 111170.	4.4	8
10	Catalytic Transfer Hydrogenation and Acid Reactions of Furfural and 5-(Hydroxymethyl)furfural over Hf-TUD-1 Type Catalysts. Molecules, 2021, 26, 7203.	3.8	7
11	Effect of the amount of SO42-/La2O3 on HZSM-5 activity for esterification reaction. Catalysis Today, 2020, 344, 150-157.	4.4	15
12	Reduction of NO with new vanadium-carbon xerogel composites. Effect of the oxidation state of vanadium species. Carbon, 2020, 156, 194-204.	10.3	9
13	Synergies, cooperation and other effects: a review for hydroconversion catalysts. Catalysis Today, 2020, 356, 260-270.	4.4	10
14	Towards understanding of phenolic compounds impact on Ni- and V-USY zeolites during bio-oils co-processing in FCC units. Fuel, 2020, 260, 116372.	6.4	17
15	Enhancement of sintering resistance of CaO-based sorbents using industrial waste resources for Ca-looping in the cement industry. Separation and Purification Technology, 2020, 235, 116190.	7.9	23
16	Bridging the gap between academic and industrial hydrocracking: on catalyst and operating conditions' effects. Catalysis Science and Technology, 2020, 10, 5136-5148.	4.1	11
17	Preface to the Special Issue Selected Contributions of the XXVI Iberoamerican Congress on catalysis – 50 years. Catalysis Today, 2020, 356, 187-188.	4.4	О
18	Bifunctional Intimacy and its Interplay with Metalâ€Acid Balance in Shaped Hydroisomerization Catalysts. ChemCatChem, 2020, 12, 4582-4592.	3.7	19

#	Article	IF	CITATIONS
19	Modified Versions of AMâ€4 for the Aqueous Phase Isomerization of Aldoâ€Saccharides. European Journal of Inorganic Chemistry, 2020, 2020, 1579-1588.	2.0	6
20	Amination Reaction of Cyclohexanol over a Commercial Ni-Based Catalyst, Part I: Influence of Operating Conditions. Industrial & Engineering Chemistry Research, 2020, 59, 6565-6579.	3.7	7
21	Catalysts based on carbon xerogels with high catalytic activity for the reduction of NOx at low temperatures. Catalysis Today, 2020, 356, 301-311.	4.4	5
22	Optimized preparation and regeneration of MFI type base catalysts for <scp>d < /scp>-glucose isomerization in water. Catalysis Science and Technology, 2020, 10, 3232-3246.</scp>	4.1	12
23	Interplay of the adsorption of light and heavy paraffins in hydroisomerization over H-beta zeolite. Catalysis Science and Technology, 2019, 9, 5368-5382.	4.1	12
24	Catalytic Conversion of 1â€butene over Modified Versions of Commercial ZSMâ€5 to Produce Clean Fuels and Chemicals. ChemCatChem, 2019, 11, 4196-4209.	3.7	10
25	Ball Milling Modified SAPOâ€11 Based Catalysts for <i>n</i> â€Decane Hydroisomerization. ChemistrySelect, 2019, 4, 6713-6718.	1.5	4
26	Gas-phase conversion of glycerol to allyl alcohol over vanadium-supported zeolite beta. Catalysis Communications, 2019, 127, 20-24.	3.3	18
27	Tailoring Synthetic Sol–Gel CaO Sorbents with High Reactivity or High Stability for Ca-Looping CO ₂ Capture. Industrial & Engineering Chemistry Research, 2019, 58, 8484-8494.	3.7	24
28	Olefin oligomerisation over nanocrystalline MFI-based micro/mesoporous zeotypes synthesised via bottom-up approaches. Renewable Energy, 2019, 138, 820-832.	8.9	11
29	1H–31P HETCOR NMR elucidates the nature of acid sites in zeolite HZSM-5 probed with trimethylphosphine oxide. Chemical Communications, 2019, 55, 12635-12638.	4.1	23
30	Quantification of the available acid sites in the hydrocracking of nitrogen-containing feedstocks over USY shaped NiMo-catalysts. Journal of Industrial and Engineering Chemistry, 2019, 71, 167-176.	5.8	19
31	A recyclable hybrid manganese(III) porphyrin magnetic catalyst for selective olefin epoxidation using molecular oxygen. Journal of Porphyrins and Phthalocyanines, 2018, 22, 331-341.	0.8	19
32	Investigation of cooperative effects between Pt/zeolite hydroisomerization catalysts through kinetic simulations. Catalysis Today, 2018, 312, 66-72.	4.4	5
33	From powder to extrudate zeolite-based bifunctional hydroisomerization catalysts: on preserving zeolite integrity and optimizing Pt location. Journal of Industrial and Engineering Chemistry, 2018, 62, 72-83.	5.8	40
34	Mesostructured Catalysts Based on the BEA Topology for Olefin Oligomerisation. ChemCatChem, 2018, 10, 2741-2754.	3.7	11
35	Influence of calcination temperature on catalytic, acid and textural properties of SO42â^'/La2O3/HZSM-5 type catalysts for biodiesel production by esterification. Microporous and Mesoporous Materials, 2018, 270, 189-199.	4.4	24
36	Catalytic activity of electrodeposited cobalt oxide films for methane combustion in a micro-channel reactor. Fuel, 2018, 232, 51-59.	6.4	20

3

#	Article	IF	CITATIONS
37	One-pot hydrogen production and cascade reaction of furfural to bioproducts over bimetallic Pd-Ni TUD-1 type mesoporous catalysts. Applied Catalysis B: Environmental, 2018, 237, 521-537.	20.2	17
38	The promoting effect of Ce in the CO2 methanation performances on NiUSY zeolite: A FTIR In Situ/Operando study. Catalysis Today, 2017, 283, 74-81.	4.4	90
39	Monitoring cobalt ions siting in BEA and FER zeolites by in-situ UV–Vis spectroscopy: A DRS study. Inorganica Chimica Acta, 2017, 455, 568-574.	2.4	9
40	Production of biodiesel using HZSM-5 zeolites modified with citric acid and SO 4 $2\hat{a}$ /La 2 O 3. Catalysis Today, 2017, 279, 267-273.	4.4	38
41	Gas-phase dehydration of glycerol over hierarchical silicoaluminophosphate SAPO-40. Catalysis Communications, 2017, 95, 16-20.	3.3	18
42	A systematic study on mixtures of Pt/zeolite as hydroisomerization catalysts. Catalysis Science and Technology, 2017, 7, 1095-1107.	4.1	30
43	Microwave synthesis of SAPO-11 materials for long chain n -alkanes hydroisomerization: Effect of physical parameters and chemical gel composition. Applied Catalysis A: General, 2017, 542, 28-37.	4.3	26
44	Quantification of metalâ€acid balance in hydroisomerization catalysts: A step further toward catalyst design. AICHE Journal, 2017, 63, 2864-2875.	3.6	35
45	TUD-1 type aluminosilicate acid catalysts for 1-butene oligomerisation. Fuel, 2017, 209, 371-382.	6.4	20
46	Nanoscale insights into Pt-impregnated mixtures of zeolites. Journal of Materials Chemistry A, 2017, 5, 16822-16833.	10.3	19
47	Elucidation of the zeolite role on the hydrogenating activity of Pt-catalysts. Catalysis Communications, 2017, 89, 152-155.	3.3	16
48	MFI Acid Catalysts with Different Crystal Sizes and Porosity for the Conversion of Furanic Compounds in Alcohol Media. ChemCatChem, 2017, 9, 2747-2759.	3.7	17
49	Catalyst regeneration using CO ₂ as reactant through reverseâ€Boudouard reaction with coke. , 2017, 7, 843-851.		15
50	Biologically Inspired and Magnetically Recoverable Copper Porphyrinic Catalysts: A Greener Approach for Oxidation of Hydrocarbons with Molecular Oxygen. Advanced Functional Materials, 2016, 26, 3359-3368.	14.9	30
51	Bulk and composite catalysts combining BEA topology and mesoporosity for the valorisation of furfural. Catalysis Science and Technology, 2016, 6, 7812-7829.	4.1	23
52	Cost-efficient method for unsymmetrical meso-aryl porphyrins and iron oxide-porphyrin hybrids prepared thereof. Dalton Transactions, 2016, 45, 16211-16220.	3.3	13
53	Waste Marble Powders as Promising Inexpensive Natural CaO-Based Sorbents for Post-Combustion CO ₂ Capture. Industrial & Engineering Chemistry Research, 2016, 55, 7860-7872.	3.7	37
54	Application of PdCe-HMOR Catalyst as NOx CH4-SCR System for Heavy-Duty Vehicles Moved by Natural Gas. Topics in Catalysis, 2016, 59, 982-986.	2.8	3

#	Article	IF	Citations
55	Vanadium-lithium alumina a potential additive for coke oxidation by CO2 in the presence of O2 during FCC catalyst regeneration. Applied Catalysis B: Environmental, 2016, 196, 117-126.	20.2	13
56	NO _x SCR with decane using Ag–MFI catalysts: on the effect of silver content and co-cation presence. Catalysis Science and Technology, 2016, 6, 3038-3048.	4.1	12
57	CO2 Hydrogenation Over Ni-Based Zeolites: Effect of Catalysts Preparation and Pre-reduction Conditions on Methanation Performance. Topics in Catalysis, 2016, 59, 314-325.	2.8	44
58	Reusable MCM-41 Immobilized Rh(I) Hydroformylation Catalysts Built on Binaphthyl-based Phosphoramidite and Phosphite Ligands. Current Organic Chemistry, 2016, 20, 1445-1453.	1.6	4
59	On the Effect of Preparation Methods of PdCe-MOR Catalysts as NOx CH4-SCR System for Natural Gas Vehicles Application. Catalysts, 2015, 5, 1815-1830.	3.5	9
60	Gas-phase dehydration of glycerol over thermally-stable SAPO-40 catalyst. RSC Advances, 2015, 5, 10667-10674.	3.6	21
61	One-pot conversion of furfural to useful bio-products in the presence of a Sn,Al-containing zeolite beta catalyst prepared via post-synthesis routes. Journal of Catalysis, 2015, 329, 522-537.	6.2	124
62	Insight into CO2 methanation mechanism over NiUSY zeolites: An operando IR study. Applied Catalysis B: Environmental, 2015, 174-175, 120-125.	20.2	223
63	Hydrogenating activity of Pt/zeolite catalysts focusing acid support and metal dispersion influence. Applied Catalysis A: General, 2015, 504, 17-28.	4.3	46
64	Potential synergic effect between MOR and BEA zeolites in NOx SCR with methane: A dual bed design approach. Applied Catalysis A: General, 2015, 506, 246-253.	4.3	9
65	Dehydration of methanol to dimethyl ether over modified vermiculites. Comptes Rendus Chimie, 2015, 18, 1211-1222.	0.5	19
66	Use of HZSM-5 modified with citric acid as acid heterogeneous catalyst for biodiesel production via esterification of oleic acid. Microporous and Mesoporous Materials, 2015, 201, 160-168.	4.4	62
67	Vanadium and alumina modified with groups I and II elements for CO2 and coke reaction under fluid catalytic cracking process. Applied Catalysis B: Environmental, 2015, 164, 225-233.	20.2	8
68	Improving HZSM-5 resistance to phenolic compounds for the bio-oils/FCC feedstocks co-processing. Fuel, 2015, 140, 484-494.	6.4	24
69	CO2 hydrogenation into CH4 on NiHNaUSY zeolites. Applied Catalysis B: Environmental, 2014, 147, 101-110.	20.2	182
70	Investigation of the nature of silver species on different Ag-containing NOx reduction catalysts: On the effect of the support. Applied Catalysis B: Environmental, 2014, 150-151, 204-217.	20.2	31
71	Effects of oxidant acid treatments on carbon-templated hierarchical SAPO-11 materials: Synthesis, characterization and catalytic evaluation in n-decane hydroisomerization. Applied Catalysis A: General, 2014, 485, 230-237.	4.3	28
72	The Oil Shale Transformation in the Presence of an Acidic BEA Zeolite under Microwave Irradiation. Energy & Ene	5.1	25

#	Article	IF	Citations
73	Size and ability do matter! Influence of acidity and pore size on the synthesis of hindered halogenated meso-phenyl porphyrins catalysed by porous solid oxides. Chemical Communications, 2014, 50, 6571-6573.	4.1	37
74	Mesoporous zirconia-based mixed oxides as versatile acid catalysts for producing bio-additives from furfuryl alcohol and glycerol. Applied Catalysis A: General, 2014, 487, 148-157.	4.3	31
75	Copolymerisation of $\hat{l}\mu$ -caprolactone and trimethylene carbonate catalysed by methanesulfonic acid. European Polymer Journal, 2013, 49, 4025-4034.	5.4	17
76	Production of biomass-derived furanic ethers and levulinate esters using heterogeneous acid catalysts. Green Chemistry, 2013, 15, 3367.	9.0	89
77	Bio-oils Upgrading for Second Generation Biofuels. Industrial & Engineering Chemistry Research, 2013, 52, 275-287.	3.7	178
78	Particular characteristics of silver species on Ag-exchanged LTL zeolite in K and H form. Microporous and Mesoporous Materials, 2013, 169, 137-147.	4.4	37
79	A New Insight Into the Mechanism of the Ringâ€Opening Polymerization of Trimethylene Carbonate Catalyzed by Methanesulfonic Acid. Macromolecular Chemistry and Physics, 2013, 214, 85-93.	2.2	17
80	Influence of rare earth elements on the acid and metal sites of Pt/HBEA catalyst for short chain n-alkane hydroisomerization. Applied Catalysis A: General, 2013, 466, 293-299.	4.3	21
81	Catalytic dehydration of d-xylose to 2-furfuraldehyde in the presence of Zr-(W,Al) mixed oxides. Tracing by-products using two-dimensional gas chromatography-time-of-flight mass spectrometry. Catalysis Today, 2012, 195, 127-135.	4.4	36
82	Decavanadate-intercalated Ni–Al hydrotalcites as precursors of mixed oxides for the oxidative dehydrogenation of propane. Catalysis Today, 2012, 192, 36-43.	4.4	17
83	Zinc(II) phthalocyanines immobilized in mesoporous silica Al-MCM-41 and their applications in photocatalytic degradation of pesticides. Journal of Hazardous Materials, 2012, 233-234, 79-88.	12.4	54
84	Towards a Deep Desilication/Dealumination of NUâ€10 Zeolite: Shapeâ€Selectivity Regulation. European Journal of Inorganic Chemistry, 2012, 2012, 4190-4199.	2.0	10
85	Investigation of a stable synthetic sol–gel CaO sorbent for CO2 capture. Fuel, 2012, 94, 624-628.	6.4	94
86	n-Heptane cracking over mixtures of HY and HZSM-5 zeolites: Influence of the presence of phenol. Fuel, 2012, 94, 571-577.	6.4	19
87	Aqueous-phase dehydration of xylose to furfural in the presence of MCM-22 and ITQ-2 solid acid catalysts. Applied Catalysis A: General, 2012, 417-418, 243-252.	4.3	92
88	Catalytic cracking in the presence of guaiacol. Applied Catalysis B: Environmental, 2011, 101, 613-621.	20.2	80
89	Fluidized bed plasma for pre-treatment of Co-ferrierite catalysts: An approach to NOx abatement. Catalysis Today, 2011, 176, 234-238.	4.4	9
90	Catalytic combustion of toluene on Pt zeolite coated cordierite foams. Catalysis Today, 2011, 176, 93-96.	4.4	46

#	Article	IF	Citations
91	deNOx over Ag/H-ZSM-5: Study of NO2 interaction with ethanol. Catalysis Today, 2011, 176, 81-87.	4.4	11
92	Study of Pt/MCM-22 based catalysts in the transformation of n-hexane: effect of rare earth elements and mode of platinum introduction. Reaction Kinetics, Mechanisms and Catalysis, 2011, 104, 417-428.	1.7	5
93	Bio-oils and FCC feedstocks co-processing: Impact of phenolic molecules on FCC hydrocarbons transformation over MFI. Fuel, 2011, 90, 467-476.	6.4	45
94	Incorporation of niobium in SAPO-11 materials: Synthesis and characterization. Microporous and Mesoporous Materials, 2011, 143, 284-290.	4.4	6
95	AROMATIZATION OF C ₆ , C ₇ PARAFFINS OVER PT/LTL CATALYSTS. Catalytic Science Series, 2011, , 293-302.	0.0	1
96	Total oxidation of toluene over calcined trimetallic hydrotalcites type catalysts. Journal of Hazardous Materials, 2010, 177, 407-413.	12.4	63
97	Dehydration of Xylose into Furfural in the Presence of Crystalline Microporous Silicoaluminophosphates. Catalysis Letters, 2010, 135, 41-47.	2.6	104
98	Effect of phenol adsorption on HY zeolite for n-heptane cracking: Comparison with methylcyclohexane. Applied Catalysis A: General, 2010, 385, 178-189.	4.3	32
99	Catalytic cyclodehydration of xylose to furfural in the presence of zeolite H-Beta and a micro/mesoporous Beta/TUD-1 composite material. Applied Catalysis A: General, 2010, 388, 141-148.	4.3	122
100	Immobilization of halogenated porphyrins and their copper complexes in MCM-41: Environmentally friendly photocatalysts for the degradation of pesticides. Applied Catalysis B: Environmental, 2010, 100, 1-9.	20.2	64
101	Acid-Catalysed Conversion of Saccharides into Furanic Aldehydes in the Presence of Three-Dimensional Mesoporous Al-TUD-1. Molecules, 2010, 15, 3863-3877.	3.8	77
102	Immobilization of 5,10,15,20-tetrakis-(2-fluorophenyl)porphyrin into MCM-41 and NaY: Routes toward photodegradation of pesticides. Pure and Applied Chemistry, 2009, 81, 2025-2033.	1.9	18
103	Cationic polymer surface treatment for zeolite washcoating deposited over cordierite foam. Materials Letters, 2009, 63, 572-574.	2.6	14
104	Hydroisomerization of n-decane over SAPO-11 catalysts synthesized with methylamine as co-template. Reaction Kinetics, Mechanisms and Catalysis, 2009, 99, 183.	1.7	2
105	Effect of phenol addition on the performances of H–Y zeolite during methylcyclohexane transformation. Applied Catalysis A: General, 2009, 353, 123-129.	4.3	48
106	Reduction of NO with metal-doped carbon aerogels. Applied Catalysis B: Environmental, 2009, 88, 135-141.	20.2	28
107	Influence of Phenol Addition on the H-ZSM-5 Zeolite Catalytic Properties during Methylcyclohexane Transformation. Energy & Description (2009), 23, 4224-4230.	5.1	64
108	Performance of supported catalysts based on a new copper vanadate-type precursor for catalytic oxidation of toluene. Journal of Hazardous Materials, 2008, 153, 628-634.	12.4	39

#	Article	IF	Citations
109	Methanol interaction with NO2: An attempt to identify intermediate compounds in CH4-SCR of NO with Co/Pd-HFER catalyst. Catalysis Today, 2008, 137, 157-161.	4.4	11
110	Catalytic oxidation of volatile organic compounds with a new precursor type copper vanadate. Catalysis Today, 2008, 133-135, 502-508.	4.4	24
111	n-Hexane hydroisomerisation over bifunctional Pt/MCM-22 catalysts. Influence of the mode of Pt introduction. Studies in Surface Science and Catalysis, 2008, 174, 1135-1138.	1.5	7
112	Development of Carbon Coatings for Cordierite Foams:  An Alternative to Cordierite Honeycombs. Langmuir, 2008, 24, 3267-3273.	3.5	18
113	Zeolite-coated ceramic foams for VOCs removal. Studies in Surface Science and Catalysis, 2008, 174, 1195-1198.	1.5	5
114	Metallic active species for deNOx SCR by methane with Co and Pd/Co HFER catalysts. Studies in Surface Science and Catalysis, 2008, 174, 1033-1038.	1.5	3
115	Strength Improvement of Cordierite Foams by a Dip Coating Method. Materials Science Forum, 2008, 587-588, 123-127.	0.3	2
116	An elegant way to increase acidity in SAPOs: use of methylamine as co-template during synthesis. Studies in Surface Science and Catalysis, 2008, 174, 281-284.	1.5	15
117	Methylamine as true template and TEAOH as purifying agent: unexpected roles of current organic additives in the hydrothermal synthesis of microporous aluminophosphates. Studies in Surface Science and Catalysis, 2007, 170, 456-463.	1.5	1
118	Unusual framework stabilization of Cu(II) and Cu(I) ions in a novel copper-substituted aluminophosphate with AEN topology prepared by one pot synthesis. Studies in Surface Science and Catalysis, 2007, , 185-192.	1.5	2
119	CH4-SCR of NO over Co and Pd ferrierite catalysts: Effect of preparation on catalytic performance. Catalysis Today, 2007, 119, 156-165.	4.4	36
120	Surface photochemistry: Ketones included within a channel type solid support, the aluminophosphate AlPO4-5. Journal of Molecular Structure, 2007, 831, 1-9.	3.6	2
121	Improvement of toluene catalytic combustion by addition of cesium in copper exchanged zeolites. Applied Catalysis B: Environmental, 2007, 70, 384-392.	20.2	50
122	Al-containing MCM-41 type materials prepared by different synthesis methods: Hydrothermal stability and catalytic properties. Microporous and Mesoporous Materials, 2006, 94, 56-65.	4.4	52
123	Solution enthalpies of 1-bromoadamantane in monoalcohols at 298.15K. Thermochimica Acta, 2006, 444, 83-85.	2.7	13
124	Two new aluminophosphates, IST-1 and IST-2: First examples of a dual templating role of water and methylamine in generating microporous structures. Microporous and Mesoporous Materials, 2006, 90, 112-128.	4.4	13
125	Hydroisomerization of n-hexane over Pt–Ni/HBEA using Catalysts Prepared by Different Methods. Catalysis Letters, 2006, 109, 83-87.	2.6	22
126	Effect of Cs impregnation on the properties of platinum in Pt/Na-BEA and Pt/Cs-BEA catalysts. Catalysis Today, 2005, 107-108, 792-799.	4.4	8

#	Article	IF	CITATIONS
127	Influence of rare earth elements La, Nd and Yb on the acidity of H-MCM-22 and H-Beta zeolites. Catalysis Today, 2005, 107-108, 663-670.	4.4	23
128	SCR of NO with methane over Co-HBEA and PdCo-HBEA catalysts. Catalysis Today, 2005, 107-108, 181-191.	4.4	23
129	Isomerization of n-hexane on bifunctional catalysts Pt/HBEA and Pt/HMCM-22 with rare earth elements. Studies in Surface Science and Catalysis, 2005, 158, 1875-1882.	1.5	6
130	Transformation of n-hexane on PtAl/MCM-41 and PtAl/SBA-15. Reaction Kinetics and Catalysis Letters, 2004, 82, 139-147.	0.6	7
131	Evidence of a solvent screen effect affecting the redox properties of Co(II) ions in CoAPO-37, CoAPO-40 and CoIST-2 (AEN), by cyclic voltammetry. Studies in Surface Science and Catalysis, 2004, 154, 1649-1654.	1.5	1
132	Activated Carbon and Tungsten Oxide Supported on Activated Carbon Catalysts for Toluene Catalytic Combustion. Environmental Science & Environmental Sc	10.0	65
133	Structural State and Redox Behavior of Framework Co(II) in CoIST-2:  A Novel Cobalt-Substituted Aluminophosphate with AEN Topology. Journal of Physical Chemistry B, 2004, 108, 8344-8354.	2.6	19
134	Nanocomposite catalytic materials: synthesis, characterisation and reactivity of Pt/Cs–BEA zeolites. Inorganica Chimica Acta, 2003, 349, 227-238.	2.4	12
135	Structure analysis of the novel microporous aluminophosphate IST-1 using synchrotron powder diffraction data and HETCOR MAS NMR. Microporous and Mesoporous Materials, 2003, 65, 43-57.	4.4	29
136	Influence of Cs loading and carbonates on TPR profiles of PtCsBEA. Studies in Surface Science and Catalysis, 2002, , 359-366.	1.5	5
137	Al-MCM-41 systems exchanged with alkali–metal cations: FT-IR characterization and catalytic activity towards 1-butene isomerization. Microporous and Mesoporous Materials, 2002, 54, 305-317.	4.4	14
138	Basic Cs-Pt/MCM-41 Catalysts: Synthesis, Characterization and Activity in n-Hexane Conversion. Catalysis Letters, 2002, 83, 221-229.	2.6	11
139	Catalytic oxidation of toluene over CuNaHY zeolites. Applied Catalysis B: Environmental, 2001, 33, 149-164.	20.2	85
140	Synthesis and characterization of new CoAPSO-40 and ZnAPSO-40 molecular sieves. Influence of the composition on the thermal and hydrothermal stability of AlPO4-40-based materials. Microporous and Mesoporous Materials, 2000, 38, 267-278.	4.4	26
141	Influence of the Alkali in Pt/Alkali- \hat{l}^2 Zeolite on the Pt Characteristics and Catalytic Activity in the Transformation of n-Hexane. Journal of Catalysis, 2000, 195, 342-351.	6.2	36
142	Basic Csß — A new support for Pt nanoparticles active in aromatization of parafins. Studies in Surface Science and Catalysis, 2000, , 2993-2998.	1.5	4
143	Selective catalytic reduction of NO on copper-exchanged zeolites: the role of the structure of the zeolite in the nature of copper-active sites. Catalysis Today, 1999, 54, 407-418.	4.4	85
144	Influence of Cesium in Pt/NaCs \hat{l}^2 on the Physico-Chemical and Catalytic Properties of the Pt Clusters in the Aromatization ofn-Hexane. Journal of Catalysis, 1999, 181, 244-255.	6.2	27

#	Article	IF	Citations
145	Aromatization ofn-Heptane on Pt/Alkali or Alkali-Earth Exchanged Beta Zeolite Catalysts: Catalyst Deactivation and Regeneration. Journal of Catalysis, 1998, 178, 1-13.	6.2	32
146	An FT-IR study of NO adsorption over Cu-exchanged MFI catalysts: Effect of Si/Al ratio, copper loading and catalyst pre-treatment. Applied Catalysis B: Environmental, 1998, 16, 79-95.	20.2	47
147	Generation of acid sites by incorporation of cobalt in the AFR structure. Studies in Surface Science and Catalysis, 1997, , 1973-1980.	1.5	3
148	Spectroscopic Characterization of the Hydroxyl Groups in SAPO-40. 2. Interaction with CO and N2. Journal of Physical Chemistry B, 1997, 101, 9244-9249.	2.6	19
149	Selective catalytic reduction of NO with propene over CuMFI zeolites: dependence on Si/Al ratio and copper loading. Applied Catalysis B: Environmental, 1997, 11, 383-401.	20.2	39
150	Characterisation of CuMFI catalysts by temperature programmed desorption of NO and temperature programmed reduction. Effect of the zeolite Si/Al ratio and copper loading. Applied Catalysis B: Environmental, 1997, 12, 249-262.	20.2	86
151	Copper-exchanged mordenites as active catalysts for NO selective catalytic reduction by propene under oxidising conditions: Effect of Si/Al ratio, copper content and Br¶nsted acidity. Applied Catalysis B: Environmental, 1997, 13, 251-264.	20.2	13
152	NO TPD and H2-TPR studies for characterisation of CuMOR catalysts The role of Si/Al ratio, copper content and cocation. Applied Catalysis B: Environmental, 1997, 14, 261-272.	20.2	85
153	Title is missing!. Catalysis Letters, 1997, 43, 31-36.	2.6	26
154	Title is missing!. Catalysis Letters, 1997, 43, 25-29.	2.6	21
155	Title is missing!. Catalysis Letters, 1997, 48, 69-73.	2.6	5
156	Synthesis, characterization, and catalytic properties of AlPO4-40, CoAPO-40, and ZnAPO-40. Zeolites, 1997, 18, 398-407.	0.5	22
157	Multiple-quantum 27Al MAS n.m.r. spectroscopy of microporous AlPO-40 and SAPO-40. Zeolites, 1997, 19, 156-160.	0.5	23
158	Disproportionation of ethylbenzene over SAPO-40. Reaction Kinetics and Catalysis Letters, 1996, 59, 219-225.	0.6	4
159	Influence of the treatment of mordenite by ammonium hexafluorosilicate on physicochemical and catalytic properties. Zeolites, 1996, 16, 275-280.	0.5	19
160	Characterization of stability and porosity of SAPO-40 using m-xylene as model reaction. Applied Catalysis A: General, 1996, 148, 167-180.	4.3	12
161	Structure-activity relationship in zeolites. Journal of Molecular Catalysis A, 1995, 96, 245-270.	4.8	87
162	Transformation of an ethylbenzene-o-xylene mixture on HMOR and Pt-HMOR catalysts. Comparison with ZSM-5 catalysts. Applied Catalysis A: General, 1995, 125, 15-27.	4.3	29

#	Article	IF	CITATIONS
163	Influence of platinum on the transformation of an ethylbenzene-o-xylene mixture on H-ZSM-5. Applied Catalysis A: General, 1995, 125, 1-14.	4.3	26
164	Thermal and hydrothermal stability of the silicoaluminophosphate SAPO-40. Microporous Materials, 1995, 4, 445-453.	1.6	19
165	Dealumination of the outer surface of MFI zeolites by ammonium hexafluorosilicate. Reaction Kinetics and Catalysis Letters, 1995, 54, 209-215.	0.6	13
166	Isomerization of C8 aromatic cut. Improvement of the selectivity of MOR- and MFI-catalysts by treatment with aqueous solutions of (NH4)2SiF6. Studies in Surface Science and Catalysis, 1995, , 393-400.	1.5	3
167	Solid-state NMR and powder XRD studies of the structure of SAPO-40 upon hydration–dehydration cycles. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 2213-2215.	1.7	9
168	Study of Catalytic Properties of SAPO-40. Studies in Surface Science and Catalysis, 1994, 84, 867-874.	1.5	20
169	Isomerization of C8 Aromatic Cuts on Modified Zeolite Catalysts With Different Structures Studies in Surface Science and Catalysis, 1989, , 1349-1356.	1.5	O
170	Influence of Si/Al ratio on the catalytic properties of NiH mordenite in the disproportionation of toluene. Journal of Molecular Catalysis, 1987, 39, 269-276.	1.2	2
171	Effect of nickel poisoning with sulphur or lead on the activity, selectivity and stability of ni-h mordenite catalysts in the disproportionation of toluene. Journal of Molecular Catalysis, 1986, 35, 227-236.	1.2	6
172	Selective Catalytic Reduction of NO _x over Zeolite-Coated Cordierite-Based Ceramic Foams: Water Deactivation. Materials Science Forum, 0, 587-588, 810-814.	0.3	1
173	Cordierite Foam Supports Washcoated with Zeolite-Based Catalysts for Volatile Organic Compounds (VOCs) Combustion. Materials Science Forum, 0, 636-637, 104-110.	0.3	6