
Natalie L Trevaskis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2173618/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lymphatic contractile function: a comprehensive review of drug effects and potential clinical application. Cardiovascular Research, 2022, 118, 2437-2457.	3.8	11
2	Association of a vaccine adjuvant with endogenous HDL increases lymph uptake and dendritic cell activation. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 172, 240-252.	4.3	2
3	Smart design approaches for orally administered lipophilic prodrugs to promote lymphatic transport. Journal of Controlled Release, 2022, 341, 676-701.	9.9	16
4	Vmeasur: A software package for experimental and clinical measurement of mesenteric lymphatic contractile function over an extended vessel length. Microcirculation, 2022, , e12748.	1.8	4
5	Intra-articular injection of biologic anti-rheumatic drugs enhances local exposure to the joint-draining lymphatics. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 173, 34-44.	4.3	8
6	The Gut-Lymph Model Gives New Treatment Strategies for Organ Failure. JAMA Surgery, 2022, 157, 540.	4.3	7
7	Editorial: Modulating Vascular Lymphatic Growth in Disease: Current and Potential Pharmacological Approaches for Prevention and Treatment. Frontiers in Pharmacology, 2022, 13, 910142.	3.5	0
8	The Impact of Conjugation Position and Linker Chemistry on the Lymphatic Transport of a Series of Glyceride and Phospholipid Mimetic Prodrugs. Journal of Pharmaceutical Sciences, 2021, 110, 489-499.	3.3	8
9	Intestinal delivery in a long-chain fatty acid formulation enables lymphatic transport and systemic exposure of orlistat. International Journal of Pharmaceutics, 2021, 596, 120247.	5.2	10
10	Targeted delivery of mycophenolic acid to the mesenteric lymph node using a triglyceride mimetic prodrug approach enhances gut-specific immunomodulation in mice. Journal of Controlled Release, 2021, 332, 636-651.	9.9	16
11	Methods for studying pulmonary lymphatics. European Respiratory Journal, 2021, 57, 2004106.	6.7	3
12	Impact of gastrointestinal tract variability on oral drug absorption and pharmacokinetics: An UNGAP review. European Journal of Pharmaceutical Sciences, 2021, 162, 105812.	4.0	137
13	Lipophilic Conjugates of Drugs: A Tool to Improve Drug Pharmacokinetic and Therapeutic Profiles. Pharmaceutical Research, 2021, 38, 1497-1518.	3.5	14
14	From influenza to COVID-19: Lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases. Acta Biomaterialia, 2021, 131, 16-40.	8.3	140
15	Mesenteric lymphatic dysfunction promotes insulin resistance and represents a potential treatment target in obesity. Nature Metabolism, 2021, 3, 1175-1188.	11.9	56
16	Intestinal lymphatic dysfunction: a new pathway mediating gut–kidney crosstalk in kidney disease. Kidney International, 2021, 100, 511-513.	5.2	2
17	Lymph-directed immunotherapy – Harnessing endogenous lymphatic distribution pathways for enhanced therapeutic outcomes in cancer. Advanced Drug Delivery Reviews, 2020, 160, 115-135.	13.7	18
18	Lymphatic targeting by albumin-hitchhiking: Applications and optimisation. Journal of Controlled Release. 2020. 327. 117-128.	9.9	55

NATALIE L TREVASKIS

#	Article	IF	CITATIONS
19	High-Density Lipoprotein Composition Influences Lymphatic Transport after Subcutaneous Administration. Molecular Pharmaceutics, 2020, 17, 2938-2951.	4.6	12
20	Targeting immune cells within lymph nodes. Nature Nanotechnology, 2020, 15, 423-425.	31.5	21
21	Intestinal Lymph Flow, and Lipid and Drug Transport Scale Allometrically From Pre-clinical Species to Humans. Frontiers in Physiology, 2020, 11, 458.	2.8	23
22	Organ-specific lymphatics play distinct roles in regulating HDL trafficking and composition. American Journal of Physiology - Renal Physiology, 2020, 318, G725-G735.	3.4	15
23	Sex-specific adipose tissue imprinting of regulatory T cells. Nature, 2020, 579, 581-585.	27.8	141
24	Therapeutic delivery to the peritoneal lymphatics: Current understanding, potential treatment benefits and future prospects. International Journal of Pharmaceutics, 2019, 567, 118456.	5.2	13
25	Lymphatic Uptake of Liposomes after Intraperitoneal Administration Primarily Occurs via the Diaphragmatic Lymphatics and is Dependent on Liposome Surface Properties. Molecular Pharmaceutics, 2019, 16, 4987-4999.	4.6	28
26	The mechanisms of pharmacokinetic food-drug interactions – A perspective from the UNGAP group. European Journal of Pharmaceutical Sciences, 2019, 134, 31-59.	4.0	224
27	Promoting intestinal lymphatic transport targets a liver-X receptor (LXR) agonist (WAY-252,623) to lymphocytes and enhances immunomodulation. Journal of Controlled Release, 2019, 296, 29-39.	9.9	12
28	Distribution of therapeutic proteins into thoracic lymph after intravenous administration is protein size-dependent and primarily occurs within the liver and mesentery. Journal of Controlled Release, 2018, 272, 17-28.	9.9	16
29	Transient Supersaturation Supports Drug Absorption from Lipid-Based Formulations for Short Periods of Time, but Ongoing Solubilization Is Required for Longer Absorption Periods. Molecular Pharmaceutics, 2017, 14, 394-405.	4.6	16
30	Correlating in Vitro Solubilization and Supersaturation Profiles with in Vivo Exposure for Lipid Based Formulations of the CETP Inhibitor CP-532,623. Molecular Pharmaceutics, 2017, 14, 4525-4538.	4.6	14
31	Frontispiz: Glycerideâ€Mimetic Prodrugs Incorporating Selfâ€Immolative Spacers Promote Lymphatic Transport, Avoid Firstâ€Pass Metabolism, and Enhance Oral Bioavailability. Angewandte Chemie, 2016, 128,	2.0	0
32	50 years of oral lipid-based formulations: Provenance, progress and future perspectives. Advanced Drug Delivery Reviews, 2016, 101, 167-194.	13.7	308
33	Lymphatic Transport and Lymphocyte Targeting of a Triglyceride Mimetic Prodrug Is Enhanced in a Large Animal Model: Studies in Greyhound Dogs. Molecular Pharmaceutics, 2016, 13, 3351-3361.	4.6	34
34	Glycerideâ€Mimetic Prodrugs Incorporating Selfâ€Immolative Spacers Promote Lymphatic Transport, Avoid Firstâ€Pass Metabolism, and Enhance Oral Bioavailability. Angewandte Chemie - International Edition, 2016, 55, 13700-13705.	13.8	50
35	Glycerideâ€Mimetic Prodrugs Incorporating Selfâ€Immolative Spacers Promote Lymphatic Transport, Avoid Firstâ€Pass Metabolism, and Enhance Oral Bioavailability. Angewandte Chemie, 2016, 128, 13904-13909.	2.0	4
36	Single Intravenous Dose of Novel Flurbiprofen-Loaded Proniosome Formulations Provides Prolonged Systemic Exposure and Anti-inflammatory Effect. Molecular Pharmaceutics, 2016, 13, 3688-3699.	4.6	20

#	Article	IF	CITATIONS
37	Frontispiece: Glycerideâ€Mimetic Prodrugs Incorporating Selfâ€Immolative Spacers Promote Lymphatic Transport, Avoid Firstâ€Pass Metabolism, and Enhance Oral Bioavailability. Angewandte Chemie - International Edition, 2016, 55, .	13.8	1
38	Constitutive Triglyceride Turnover into the Mesenteric Lymph Is Unable to Support Efficient Lymphatic Transport of a Biomimetic Triglyceride Prodrug. Journal of Pharmaceutical Sciences, 2016, 105, 786-796.	3.3	17
39	A new in vitro lipid digestion – in vivo absorption model to evaluate the mechanisms of drug absorption from lipid-based formulations. Pharmaceutical Research, 2016, 33, 970-982.	3.5	58
40	The Mesenteric Lymph Duct Cannulated Rat Model: Application to the Assessment of Intestinal Lymphatic Drug Transport. Journal of Visualized Experiments, 2015, , .	0.3	27
41	Methotrexate-Conjugated PEGylated Dendrimers Show Differential Patterns of Deposition and Activity in Tumor-Burdened Lymph Nodes after Intravenous and Subcutaneous Administration in Rats. Molecular Pharmaceutics, 2015, 12, 432-443.	4.6	51
42	Profiling the Role of Deacylation-Reacylation in the Lymphatic Transport of a Triglyceride-Mimetic Prodrug. Pharmaceutical Research, 2015, 32, 1830-1844.	3.5	29
43	From sewer to saviour — targeting the lymphatic system to promote drug exposure and activity. Nature Reviews Drug Discovery, 2015, 14, 781-803.	46.4	479
44	In vitro–in vivo evaluation of lipid based formulations of the CETP inhibitors CP-529,414 (torcetrapib) and CP-532,623. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 973-985.	4.3	15
45	Targeted delivery of a model immunomodulator to the lymphatic system: Comparison of alkyl ester versus triglyceride mimetic lipid prodrug strategies. Journal of Controlled Release, 2014, 177, 1-10.	9.9	76
46	Lipid-Based Formulations and Drug Supersaturation: Harnessing the Unique Benefits of the Lipid Digestion/Absorption Pathway. Pharmaceutical Research, 2013, 30, 2976-2992.	3.5	94
47	Lipid Absorption Triggers Drug Supersaturation at the Intestinal Unstirred Water Layer and Promotes Drug Absorption from Mixed Micelles. Pharmaceutical Research, 2013, 30, 3045-3058.	3.5	43
48	A Mouse Model to Evaluate the Impact of Species, Sex, and Lipid Load on Lymphatic Drug Transport. Pharmaceutical Research, 2013, 30, 3254-3270.	3.5	36
49	The Impact of Lymphatic Transport on the Systemic Disposition of Lipophilic Drugs. Journal of Pharmaceutical Sciences, 2013, 102, 2395-2408.	3.3	25
50	Strategies to Address Low Drug Solubility in Discovery and Development. Pharmacological Reviews, 2013, 65, 315-499.	16.0	1,217
51	Recent Advances in Lipid-Based Formulation Technology. Pharmaceutical Research, 2013, 30, 2971-2975.	3.5	16
52	The Potential for Drug Supersaturation during Intestinal Processing of Lipid-Based Formulations May Be Enhanced for Basic Drugs. Molecular Pharmaceutics, 2013, 10, 2601-2615.	4.6	36
53	Intestinal Bile Secretion Promotes Drug Absorption from Lipid Colloidal Phases via Induction of Supersaturation. Molecular Pharmaceutics, 2013, 10, 1874-1889.	4.6	67
54	Intravenous Dosing Conditions May Affect Systemic Clearance for Highly Lipophilic Drugs: Implications for Lymphatic Transport and Absolute Bioavailability Studies. Journal of Pharmaceutical Sciences, 2012, 101, 3540-3546.	3.3	12

NATALIE L TREVASKIS

#	Article	IF	CITATIONS
55	Correction to "Targeted Drug Delivery to Lymphocytes: A Route to Site-Specific Immunomodulation?â€ . Molecular Pharmaceutics, 2011, 8, 2484-2484.	4.6	4
56	Acute Hypertriglyceridemia Promotes Intestinal Lymphatic Lipid and Drug Transport: A Positive Feedback Mechanism in Lipid and Drug Absorption. Molecular Pharmaceutics, 2011, 8, 1132-1139.	4.6	5
57	Fatty Acid Binding Proteins: Potential Chaperones of Cytosolic Drug Transport in the Enterocyte?. Pharmaceutical Research, 2011, 28, 2176-2190.	3.5	17
58	The Role of the Intestinal Lymphatics in the Absorption of Two Highly Lipophilic Cholesterol Ester Transfer Protein Inhibitors (CP524,515 and CP532,623). Pharmaceutical Research, 2010, 27, 878-893.	3.5	35
59	The Mechanism of Lymphatic Access of Two Cholesteryl Ester Transfer Protein Inhibitors (CP524,515) Tj ETQq1 1 2010, 27, 1949-1964.	0.784314 3.5	rgBT /Overl 36
60	Targeted Drug Delivery to Lymphocytes: A Route to Site-Specific Immunomodulation?. Molecular Pharmaceutics, 2010, 7, 2297-2309.	4.6	48
61	Intestinal Lymphatic Transport Enhances the Post-Prandial Oral Bioavailability of a Novel Cannabinoid Receptor Agonist Via Avoidance of First-Pass Metabolism. Pharmaceutical Research, 2009, 26, 1486-1495.	3.5	41
62	Lipid-based delivery systems and intestinal lymphatic drug transport: A mechanistic update. Advanced Drug Delivery Reviews, 2008, 60, 702-716.	13.7	344
63	Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nature Reviews Drug Discovery, 2007, 6, 231-248.	46.4	1,446
64	An Acute and Coincident Increase in FABP Expression and Lymphatic Lipid and Drug Transport Occurs During Intestinal Infusion of Lipid-Based Drug Formulations to Rats. Pharmaceutical Research, 2006, 23, 1786-1796.	3.5	8
65	Tissue uptake of DDT is independent of chylomicron metabolism. Archives of Toxicology, 2006, 80, 196-200.	4.2	10
66	The Lymph Lipid Precursor Pool Is a Key Determinant of Intestinal Lymphatic Drug Transport. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 881-891.	2.5	47
67	AN EXAMINATION OF THE INTERPLAY BETWEEN ENTEROCYTE-BASED METABOLISM AND LYMPHATIC DRUG TRANSPORT IN THE RAT. Drug Metabolism and Disposition, 2006, 34, 729-733.	3.3	33
68	Bile Increases Intestinal Lymphatic Drug Transport in the Fasted Rat. Pharmaceutical Research, 2005, 22, 1863-1870.	3.5	43