Jordi Colomer-Farrarons

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2173145/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Temperature and Flow Rate on the Cell-Free Area in the Microfluidic Channel. Membranes, 2021, 11, 109.	1.4	5
2	Self-Powered Point-of-Care Device for Galvanic Cell-Based Sample Concentration Measurement. Sensors, 2021, 21, 2665.	2.1	4
3	Ubiquitous Self-Powered Architecture for Fuel Cell-Based Point-of-Care Applications. IEEE Transactions on Industrial Electronics, 2021, 68, 11447-11457.	5.2	6
4	An integrated detection method for flow viscosity measurements in microdevices. IEEE Transactions on Biomedical Engineering, 2020, 68, 1-1.	2.5	4
5	Self-Powered Portable Electronic Reader for Point-of-Care Amperometric Measurements. Sensors, 2019, 19, 3715.	2.1	6
6	Competitive USB-Powered Hand-Held Potentiostat for POC Applications: An HRP Detection Case. Sensors, 2019, 19, 5388.	2.1	9
7	Energy-Aware Adaptative Supercapacitor Storage System for Multi-Harvesting Solutions. , 2018, , .		3
8	Electrochemical Instrumentation of an Embedded Potentiostat System (EPS) for a Programmable-System-On-a-Chip. Sensors, 2018, 18, 4490.	2.1	5
9	â€~Plug-and-Power' Point-of-Care diagnostics: A novel approach for self-powered electronic reader-based portable analytical devices. Biosensors and Bioelectronics, 2018, 118, 88-96.	5.3	25
10	Combined Dielectrophoresis and Impedance Systems for Bacteria Analysis in Microfluidic On-Chip Platforms. Sensors, 2016, 16, 1514.	2.1	38
11	A low-power electronic instrumentation for multi-parametric diabetes mellitus analysis. , 2016, , .		1
12	An adaptative self-powered energy harvester strain sensing device based of mechanical vibrations for structural health monitoring applications. , 2016, , .		3
13	A portable point-of-care device for multi-parametric diabetes mellitus analysis. , 2015, , .		3
14	Combined dielectrophoretic and impedance system for onâ€chip controlled bacteria concentration: Application to <i>Escherichia coli</i> . Electrophoresis, 2015, 36, 1130-1141.	1.3	21
15	Piezoelectric harvester-based self-powered adaptive circuit with wireless data transmission capability for structural health monitoring. , 2015, , .		4
16	Piezoelectric Harvester-based structural health monitoring that uses a self-powered adaptive circuit. , 2015, , .		5
17	Dielectrophoretic concentrator enhancement based on dielectric poles for continuously flowing samples. Electrophoresis, 2015, 36, 1405-1413.	1.3	5
18	Toward an Anemia Early Detection Device Based on 50-μL Whole Blood Sample. IEEE Transactions on Biomedical Engineering, 2015, 62, 708-716.	2.5	16

#	Article	IF	CITATIONS
19	An Instantaneous Low-Cost Point-of-Care Anemia Detection Device. Sensors, 2015, 15, 4564-4577.	2.1	22
20	Small-volume multiparametric electrochemical detection at low cost polymeric devices featuring nanoelectrodes. Proceedings of SPIE, 2015, , .	0.8	3
21	Design of an implantable nano-enabled biomédical device for in-vivo glucose monitoring. , 2014, , .		Ο
22	Design of a Customized Multipurpose Nano-Enabled Implantable System for In-Vivo Theranostics. Sensors, 2014, 14, 19275-19306.	2.1	14
23	A portable point-of-use EIS device for in-vivo biomédical applications. , 2014, , .		3
24	Towards a portable point-of-use blood analysis with EIS technique device. , 2014, , .		2
25	CMOS Front-End Architecture for In-vivo Biomedical Subcutaneous Detection Devices. , 2011, , 133-153.		0
26	Energy Harvesting (Multi Harvesting Power Chip). , 2011, , 37-91.		1
27	Biomedical Integrated Instrumentation. , 2011, , 93-132.		0
28	Low-Voltage µPower CMOS Subcutaneous Biomedical Implantable Device for True/False Applications. , 2011, , .		0
29	Low-Voltage µPower CMOS Subcutaneous Biomedical Implantable Device for True/False applications. , 2010, , .		0
30	Design of a miniaturized electrochemical instrument for in-situ O 2 monitoring. , 2009, , .		2
31	Portable Bio-Devices: Design of electrochemical instruments from miniaturized to implantable devices. , 0, , .		5
32	Bioelectronics for Amperometric Biosensors. , 0, , .		13