Guilhem Faure

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2172990/publications.pdf

Version: 2024-02-01

257429 395678 2,479 33 24 33 h-index citations g-index papers 37 37 37 4100 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Epistasis at the SARS-CoV-2 Receptor-Binding Domain Interface and the Propitiously Boring Implications for Vaccine Escape. MBio, 2022, 13, e0013522.	4.1	35
2	Human pathogenic RNA viruses establish noncompeting lineages by occupying independent niches. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	9
3	Mitochondria-rough-ER contacts in the liver regulate systemic lipid homeostasis. Cell Reports, 2021, 34, 108873.	6.4	76
4	Dual modes of CRISPR-associated transposon homing. Cell, 2021, 184, 2441-2453.e18.	28.9	86
5	Ongoing global and regional adaptive evolution of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	196
6	Cargo Genes of Tn <i>7</i> -Like Transposons Comprise an Enormous Diversity of Defense Systems, Mobile Genetic Elements, and Antibiotic Resistance Genes. MBio, 2021, 12, e0293821.	4.1	34
7	Detection of SARS-CoV-2 with SHERLOCK One-Pot Testing. New England Journal of Medicine, 2020, 383, 1492-1494.	27.0	506
8	Genomic determinants of pathogenicity in SARS-CoV-2 and other human coronaviruses. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15193-15199.	7.1	196
9	Game-Theoretical Modeling of Interviral Conflicts Mediated by Mini-CRISPR Arrays. Frontiers in Microbiology, 2020, 11, 381.	3.5	6
10	Comparative genomics and evolution of trans-activating RNAs in Class 2 CRISPR-Cas systems. RNA Biology, 2019, 16, 435-448.	3.1	45
11	Translational coupling via termination-reinitiation in archaea and bacteria. Nature Communications, 2019, 10, 4006.	12.8	45
12	Systematic prediction of functionally linked genes in bacterial and archaeal genomes. Nature Protocols, 2019, 14, 3013-3031.	12.0	21
13	CRISPR–Cas in mobile genetic elements: counter-defence and beyond. Nature Reviews Microbiology, 2019, 17, 513-525.	28.6	205
14	iPBAvizu: a PyMOL plugin for an efficient 3D protein structure superimposition approach. Source Code for Biology and Medicine, 2019, 14, 5.	1.7	14
15	CRISPR–Cas: Complex Functional Networks and Multiple Roles beyond Adaptive Immunity. Journal of Molecular Biology, 2019, 431, 3-20.	4.2	73
16	Discovery and Evolution of New Domains in Yeast Heterochromatin Factor Sir4 and Its Partner Esc1. Genome Biology and Evolution, 2019, 11, 572-585.	2.5	7
17	Adaptation of mRNA structure to control protein folding. RNA Biology, 2017, 14, 1649-1654.	3.1	23
18	Role of mRNA structure in the control of protein folding. Nucleic Acids Research, 2016, 44, 10898-10911.	14.5	99

#	Article	IF	Citations
19	Protein flexibility in the light of structural alphabets. Frontiers in Molecular Biosciences, 2015, 2, 20.	3.5	71
20	Universal distribution of mutational effects on protein stability, uncoupling of protein robustness from sequence evolution and distinct evolutionary modes of prokaryotic and eukaryotic proteins. Physical Biology, 2015, 12, 035001.	1.8	27
21	Sumoylation of Human Argonaute 2 at Lysine-402 Regulates Its Stability. PLoS ONE, 2014, 9, e102957.	2.5	31
22	The Câ€terminal extension of human RTEL1, mutated in Hoyeraalâ€Hreidarsson syndrome, contains Harmoninâ€Nâ€like domains. Proteins: Structure, Function and Bioinformatics, 2014, 82, 897-903.	2.6	31
23	Expanding the SRI domain family: A common scaffold for binding the phosphorylated Câ€terminal domain of RNA polymerase II. FEBS Letters, 2014, 588, 4431-4437.	2.8	19
24	Identification of hidden relationships from the coupling of Hydrophobic Cluster Analysis and Domain Architecture information. Bioinformatics, 2013, 29, 1726-1733.	4.1	29
25	Comprehensive Repertoire of Foldable Regions within Whole Genomes. PLoS Computational Biology, 2013, 9, e1003280.	3.2	38
26	InterEvScore: a novel coarse-grained interface scoring function using a multi-body statistical potential coupled to evolution. Bioinformatics, 2013, 29, 1742-1749.	4.1	79
27	InterEvol database: exploring the structure and evolution of protein complex interfaces. Nucleic Acids Research, 2012, 40, D847-D856.	14.5	47
28	Versatility and Invariance in the Evolution of Homologous Heteromeric Interfaces. PLoS Computational Biology, 2012, 8, e1002677.	3.2	42
29	Structural characterization of filaments formed by human Xrcc4–Cernunnos/XLF complex involved in nonhomologous DNA end-joining. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12663-12668.	7.1	126
30	Detection of novel recombinases in bacteriophage genomes unveils Rad52, Rad51 and Gp2.5 remote homologs. Nucleic Acids Research, 2010, 38, 3952-3962.	14.5	117
31	Delineation of the Xrcc4-interacting Region in the Globular Head Domain of Cernunnos/XLF. Journal of Biological Chemistry, 2010, 285, 26475-26483.	3.4	44
32	Analysis of protein contacts into Protein Units. Biochimie, 2009, 91, 876-887.	2.6	15
33	Protein contacts, inter-residue interactions and side-chain modelling. Biochimie, 2008, 90, 626-639.	2.6	55