Youngson Choe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2172472/publications.pdf

Version: 2024-02-01

126 papers	1,969 citations	218677 26 h-index	38 g-index
126	126	126	1870
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hydrothermal synthesis and characterization of quartz nanocrystals — Implications from a simple kinetic growth model. Korean Journal of Chemical Engineering, 2022, 39, 440-450.	2.7	O
2	Facile generation of thenil and furil based blue emitters for the fabrication of non-doped and solution-processed light-emitting electrochemical cells. Journal of Materials Chemistry C, 2022, 10, 2245-2254.	5.5	5
3	Defect-engineered MOF-801 for cycloaddition of CO ₂ with epoxides. Journal of Materials Chemistry A, 2022, 10, 10051-10061.	10.3	42
4	Bright and Efficient Red Light-Emitting Electrochemical Cells with Nondoped Organic Small Molecules: A New Approach. ACS Photonics, 2022, 9, 203-210.	6.6	9
5	Adhesive and Impact-Peel Strength Improvement of Epoxy Resins Modified with Mono and Diamine Functionalized Elastomers. Advances in Polymer Technology, 2022, 2022, 1-9.	1.7	1
6	Hydrothermal synthesis of novel two-dimensional α-quartz nanoplates and their applications in energy-saving, high-efficiency, microalgal biorefineries. Chemical Engineering Journal, 2021, 413, 127467.	12.7	11
7	Catalytic Performance of CPM-200-In/Mg in the Cycloaddition of CO2 and Epoxides. Catalysts, 2021, 11, 430.	3.5	5
8	Prediction of Lap Shear Strength and Impact Peel Strength of Epoxy Adhesive by Machine Learning Approach. Nanomaterials, 2021, 11, 872.	4.1	13
9	Three-dimensional amino acid backbone Cu-aspartate metal–organic framework as a catalyst for the cycloaddition of propylene oxide and CO2. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 425-439.	1.7	3
10	A catalytic approach of blending CO2-activating MOF struts for cycloaddition reaction in a helically interlaced Cu(II) amino acid imidazolate framework: DFT-corroborated investigation. Research on Chemical Intermediates, 2021, 47, 3979-3997.	2.7	7
11	Reactive Core-Shell Bottlebrush Copolymer as Highly Effective Additive for Epoxy Toughening. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1626-1633.	3.8	5
12	Novel Thenil-Based Ionic Small Molecules for Nondoped Light-Emitting Electrochemical Cells for Ultrapure Green Emission. Journal of Physical Chemistry C, 2021, 125, 17993-18001.	3.1	6
13	Surface modification of CuS counter electrodes by hydrohalic acid treatment for improving interfacial charge transfer in quantum-dot-sensitized solar cells. Journal of Colloid and Interface Science, 2021, 595, 15-24.	9.4	11
14	Furil-based ionic small molecules for green-emitting non-doped LECs with improved color purity. New Journal of Chemistry, 2021, 45, 12576-12584.	2.8	4
15	Thenil and furil-imidazole-based efficient ionic green emitters with high color purity for non-doped light-emitting electrochemical cells. Journal of Materials Chemistry C, 2021, 9, 8265-8273.	5.5	10
16	Preferential killing of bacterial cells by surface-modified organosilane-treated ZnO quantum dots synthesized through a co-precipitation method. New Journal of Chemistry, 2021, 45, 12986-12995.	2.8	6
17	Enhancing Toughness and Impact Strength of Epoxy Resins by Using Hyperbranched Polymers. International Journal of Polymer Science, 2021, 2021, 1-9.	2.7	3
18	Multi-variate metal organic framework as efficient catalyst for the cycloaddition of CO2 and epoxides in a gas-liquid-solid reactor. Chemical Engineering Journal, 2020, 386, 121700.	12.7	56

#	Article	IF	CITATIONS
19	Control of the interfacial charge transfer resistance to improve the performance of quantum dot sensitized solar cells with highly electrocatalytic Cu-doped SnS counter electrodes. Applied Surface Science, 2020, 508, 145297.	6.1	12
20	Small Molecules in Lightâ€Emitting Electrochemical Cells: Promising Lightâ€Emitting Materials. Advanced Functional Materials, 2020, 30, 1907126.	14.9	53
21	Novel Triazine-Based Donor–Acceptor Ionic Green Emitters for Nondoped Light-Emitting Electrochemical Cells. Journal of Physical Chemistry C, 2020, 124, 19273-19281.	3.1	10
22	Introduction of heterocyclic ring to phenanthroimidazole moiety for efficient blue emitting ionic small molecule LECs. Organic Electronics, 2020, 87, 105939.	2.6	6
23	Utilization of novel phenanthrene–imidazole-based ionic small molecules for blue light-emitting electrochemical cells. Journal of Materials Chemistry C, 2020, 8, 4580-4587.	5.5	14
24	Adhesion Behavior of Catechol-Incorporated Silicone Elastomer on Metal Surface. ACS Applied Polymer Materials, 2020, 2, 2444-2451.	4.4	17
25	CAU-11-COOH with a V-Shaped Linker as a Catalyst for the Solvent-Free Synthesis of Cyclic Carbonates from CO2 and Epoxides. Journal of Nanoscience and Nanotechnology, 2020, 20, 752-759.	0.9	4
26	Adenine-Based Zn(II)/Cd(II) Metalâ€"Organic Frameworks as Efficient Heterogeneous Catalysts for Facile CO ₂ Fixation into Cyclic Carbonates: A DFT-Supported Study of the Reaction Mechanism. Inorganic Chemistry, 2019, 58, 11389-11403.	4.0	92
27	Water-Tolerant DUT-Series Metal–Organic Frameworks: A Theoretical–Experimental Study for the Chemical Fixation of CO ₂ and Catalytic Transfer Hydrogenation of Ethyl Levulinate to γ-Valerolactone. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41458-41471.	8.0	55
28	The effect of chain architecture on the phase behavior of A ₄ B ₄ miktoarm block copolymers. Polymer Chemistry, 2019, 10, 3079-3087.	3.9	11
29	Fabrication of hierarchically porous MIL-88-NH ₂ (Fe): a highly efficient catalyst for the chemical fixation of CO ₂ under ambient pressure. Inorganic Chemistry Frontiers, 2019, 6, 3613-3620.	6.0	27
30	Enhanced light absorption and charge recombination control in quantum dot sensitized solar cells using tin doped cadmium sulfide quantum dots. Journal of Colloid and Interface Science, 2019, 534, 291-300.	9.4	21
31	Ionicâ€Liquidâ€Functionalized UiOâ€66 Framework: An Experimental and Theoretical Study on the Cycloaddition of CO ₂ and Epoxides. ChemSusChem, 2019, 12, 1033-1042.	6.8	61
32	Influence of residual impurities on ringâ€opening metathesis polymerization after copper(I)â€catalyzed alkyneâ€azide cycloaddition click reaction. Journal of Polymer Science Part A, 2019, 57, 726-737.	2.3	13
33	Aggregation induced emission small molecules for blue light-emitting electrochemical cells. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 374, 10-15.	3.9	25
34	Carbazole based ionic small molecule emitter for non-doped light-emitting electrochemical cells. Organic Electronics, 2019, 67, 141-145.	2.6	14
35	Phenothiazine derivatives as an easily accessible emitter for green light-emitting electrochemical cells. Journal of Luminescence, 2018, 197, 383-388.	3.1	18
36	H3PO4 treated surface modified CuS counter electrodes with high electrocatalytic activity for enhancing photovoltaic performance of quantum dot-sensitized solar cells. Applied Surface Science, 2018, 440, 1022-1026.	6.1	16

3

#	Article	IF	CITATIONS
37	Blue-light emitting electrochemical cells comprising pyrene-imidazole derivatives. Optical Materials, 2018, 78, 44-51.	3.6	7
38	Red-light-emitting electrochemical cells based on cationic iridium complexes with phenanthroimidazole-type ancillary ligand. Organic Electronics, 2018, 54, 167-176.	2.6	15
39	Interactions between brush-grafted nanoparticles within chemically identical homopolymers: the effect of brush polydispersity. Soft Matter, 2018, 14, 1026-1042.	2.7	13
40	Improved photovoltaic performance of quantum dot-sensitized solar cells based on highly electrocatalytic Ca-doped CuS counter electrodes. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358, 177-185.	3.9	12
41	Balancing antimicrobial performance with hemocompatibility in amphiphilic homopolymers. Journal of Polymer Science Part A, 2018, 56, 2391-2396.	2.3	7
42	Microstructural Characteristics and m23c6 Precipitate Behavior of the Course-Grained Heat-Affected Zone of T23 Steel without Post-Weld Heat Treatment. Metals, 2018, 8, 170.	2.3	9
43	Enhancement of Magnetoelectric Conversion Achieved by Optimization of Interfacial Adhesion Layer in Laminate Composites. ACS Applied Materials & Samp; Interfaces, 2018, 10, 32323-32330.	8.0	37
44	Tuning the photophysical properties of cationic Ir(III) complexes containing oxazoline-based ancillary ligand. Molecular Crystals and Liquid Crystals, 2017, 645, 25-35.	0.9	0
45	Improving the efficiency of quantum-dot-sensitized solar cells by optimizing the growth time of the CuS counter electrode. Applied Surface Science, 2017, 416, 446-453.	6.1	23
46	Addressing the mid-point of polymer chains for multiple functionalization purposes through sequential thiol–epoxy †click' and esterification reactions. RSC Advances, 2017, 7, 19439-19447.	3.6	9
47	Blue Light-Emitting Electrochemical Cells Based on Angularly Structured Phenanthroimidazole Derivatives. Journal of Physical Chemistry C, 2017, 121, 14811-14818.	3.1	20
48	Small Molecule-Based Light-Emitting Electrochemical Cells. , 2017, , 329-349.		0
49	Scalable ambient synthesis of waterâ€soluble poly(βâ€hydroxythioâ€ether)s. Journal of Polymer Science Part A, 2017, 55, 3381-3386.	2.3	17
50	Phenothiazine based blue emitter for light-emitting electrochemical cells. New Journal of Chemistry, 2017, 41, 9668-9673.	2.8	20
51	Domain swelling in ARB-type triblock copolymers via self-adjusting effective dispersity. Soft Matter, 2017, 13, 5527-5534.	2.7	3
52	Molecular Tailoring of Poly(styrene- <i>b</i> -methyl methacrylate) Block Copolymer Toward Perpendicularly Oriented Nanodomains with Sub-10 nm Features. ACS Macro Letters, 2017, 6, 1386-1391.	4.8	37
53	Phenanthroimidazole derivatives for single component blue light-emitting electrochemical cells. Molecular Crystals and Liquid Crystals, 2017, 654, 234-243.	0.9	2
54	Architectural Effects of Organic Nanoparticles on Block Copolymer Orientation. Macromolecules, 2017, 50, 5025-5032.	4.8	20

#	Article	IF	CITATIONS
55	Enhanced photovoltaic performance of quantum dot-sensitized solar cells with a progressive reduction of recombination using Cu-doped CdS quantum dots. Applied Surface Science, 2017, 396, 582-589.	6.1	67
56	Enhanced Low-Temperature Impact-Peel Resistance of Nano-Toughened Epoxy Resins. Science of Advanced Materials, 2017, 9, 2137-2141.	0.7	1
57	Light-Emitting Electrochemical Cells Based on Oxazoline-Iridium(III) Complexes. Journal of Nanoscience and Nanotechnology, 2017, 17, 5485-5491.	0.9	O
58	Host–Dopant System To Generate Bright Electroluminescence from Small Organic Molecule Functionalized Light-Emitting Electrochemical Cells. Journal of Physical Chemistry C, 2016, 120, 12207-12217.	3.1	59
59	Photophysical, electrochemical, and quantum chemical properties of cationic iridium complexes with tunable emission color. Journal of Electroanalytical Chemistry, 2016, 780, 249-256.	3.8	6
60	Green Electroluminescence from Charged Phenothiazine Derivative. Journal of Physical Chemistry C, 2016, 120, 20247-20253.	3.1	44
61	Three-Dimensional Multilayered Nanostructures from Crosslinkable Block Copolymers. ACS Macro Letters, 2016, 5, 287-291.	4.8	14
62	Synthesis of heteroleptic iridium complexes with sterically hindered methyl groups on pyrazole ligands for efficient yellow and green light-emitting electrochemical cells. Dyes and Pigments, 2016, 128, 190-200.	3.7	28
63	Fabrication of efficient light-emitting electrochemical cells utilizing thiazole- and pyridine-based cationic iridium complexes. Electrochimica Acta, 2016, 195, 112-123.	5.2	5
64	Controlling the microdomain orientation in block copolymer thin films via cross-linkable random copolymer neutral layer. Polymer Journal, 2016, 48, 333-340.	2.7	10
65	Non-doped deep blue light-emitting electrochemical cells from charged organic small molecules. RSC Advances, 2016, 6, 28912-28918.	3.6	37
66	Single Step Process for Self-Assembled Block Copolymer Patterns via in Situ Annealing during Spin-Casting. ACS Macro Letters, 2015, 4, 656-660.	4.8	12
67	Perpendicularly Oriented Block Copolymer Thin Films Induced by Neutral Star Copolymer Nanoparticles. ACS Macro Letters, 2015, 4, 133-137.	4.8	20
68	Combined study on conductive AFM and damascene process to visualize Nano-Scaled defects in Cr thin films on polymer substrate. Electronic Materials Letters, 2015, 11, 164-169.	2.2	0
69	Synthesis and photophysical characterization of an ionic fluorene derivative for blue light-emitting electrochemical cells. Organic Electronics, 2015, 24, 297-302.	2.6	40
70	Blue and Blue-Green Light-Emitting Cationic Iridium Complexes: Synthesis, Characterization, and Optoelectronic Properties. ACS Applied Materials & Samp; Interfaces, 2015, 7, 7741-7751.	8.0	50
71	Utilization of a phenanthroimidazole based fluorophore in light-emitting electrochemical cells. Journal of Materials Chemistry C, 2015, 3, 4683-4687.	5.5	63
72	Synthesis and characterization of cationic iridium complexes for the fabrication of green and yellow light-emitting devices. Materials Chemistry and Physics, 2015, 156, 206-213.	4.0	19

#	Article	IF	Citations
73	Synthesis and Photophysical Properties of Cationic Iridium Complexes using Oxazoline based Ancillary Ligands for Lighting Applications. Molecular Crystals and Liquid Crystals, 2015, 618, 55-65.	0.9	1
74	Phenanthroimidazole Derivative as an Easily Accessible Emitter for Non-Doped Light-Emitting Electrochemical Cells. Journal of Physical Chemistry C, 2015, 119, 23676-23684.	3.1	51
75	Combined epitaxial self-assembly of block copolymer lamellae on a hexagonal pre-pattern within microgrooves. Soft Matter, 2015, 11, 4242-4250.	2.7	9
76	Light-emitting properties of cationic iridium complexes containing phenanthroline based ancillary ligand with blue-green and green emission colors. Optical Materials, 2015, 39, 40-45.	3.6	10
77	Characteristics of Light Emitting Electrochemical Cells Using Cationic Iridium(III) Complexes with Imidazole Based Ancillary Ligand. Molecular Crystals and Liquid Crystals, 2014, 601, 205-214.	0.9	2
78	Light Emitting Electrochemical Cells Based on Ionic Iridium Complexes and Ionic Conductor Blend as the Active Layer. Molecular Crystals and Liquid Crystals, 2014, 601, 173-181.	0.9	2
79	Mechanical Properties of Highly Flexible Epoxy Systems Containing Nano-Sized Polymeric and Inorganic Particles. Molecular Crystals and Liquid Crystals, 2014, 598, 47-53.	0.9	4
80	Green and blue–green light-emitting electrochemical cells based on cationic iridium complexes with 2-(4-ethyl-2-pyridyl)-1H-imidazole ancillary ligand. Organic Electronics, 2014, 15, 667-674.	2.6	50
81	Electroluminescent Properties of LECs Based on Ionic Transition Metal Complexes Using Tetrazole-Based Ancillary Ligand. Journal of Solution Chemistry, 2014, 43, 1710-1721.	1.2	9
82	Constructive Effects of Long Alkyl Chains on the Electroluminescent Properties of Cationic Iridium Complex-Based Light-Emitting Electrochemical Cells. ACS Applied Materials & Electrochemical Cells. ACS Applied Mat	8.0	54
83	Impact Optimized Performance of Epoxy/ Polyamide/CSR(Core Shell Rubber)/Anhydride Blends at Low Temperature. Molecular Crystals and Liquid Crystals, 2013, 579, 55-61.	0.9	5
84	Performance of PCDTBT:PC ₇₀ BM Organic Photovoltaic Cells Fabricated Using Dipolar and Common Dopants as Processing Additives. Molecular Crystals and Liquid Crystals, 2013, 581, 18-24.	0.9	3
85	Effect of Processing Additives on PCDTBT:PC ₆₀ BM Based Organic Photovoltaic Cells. Molecular Crystals and Liquid Crystals, 2013, 586, 95-103.	0.9	2
86	Highly luminescent yellow and yellowish-green light-emitting electrochemical cells based on cationic iridium complexes with phenanthroline based ancillary ligands. Optical Materials, 2013, 35, 407-413.	3.6	31
87	Optoelectronic properties of green and yellow light-emitting electrochemical cells based on cationic iridium complexes. Polyhedron, 2013, 57, 77-82.	2.2	30
88	Electroluminescent properties of yellow light-emitting electrochemical cells based on a cationic iridium complex and the effect of ionic liquids incorporation in an active layer. Thin Solid Films, 2013, 531, 530-534.	1.8	20
89	Effect of Smaller Counter Anion, BF ₄ ^{â€"} , on the Electroluminescent Properties of Cationic Iridium Complex Based Light-Emitting Electrochemical Cells. Molecular Crystals and Liquid Crystals, 2013, 584, 131-138.	0.9	10
90	Preparation and Mechanical Characterization of Tack-free Surfaced CSR/Epoxy Adhesive Films. Molecular Crystals and Liquid Crystals, 2012, 566, 100-105.	0.9	2

#	Article	IF	CITATIONS
91	Performance Characteristics of Organic Photovoltaic Cells using Pentacene as a Hole Conducting Layer Material. Molecular Crystals and Liquid Crystals, 2012, 566, 175-181.	0.9	0
92	Direct observation of nano-sized defects in thin films formed by sputter deposition. , 2012, , .		0
93	Performance Characteristics of Organic Photovoltaic Cells with Pentacene as a Hole Transport Layer. Molecular Crystals and Liquid Crystals, 2012, 564, 213-221.	0.9	0
94	Effect of ionic liquids on the electroluminescence of yellowish-green light-emitting electrochemical cells using bis(2-(2,4-difluorophenyl)pyridine)4,7-diphenyl-1,10-phenanthroline-iridium(III) hexafluorophosphate. Materials Chemistry and Physics, 2012, 136, 173-178.	4.0	26
95	Iridium-based light-emitting electrochemical cells containing ionic liquids in the luminous layer. Materials Research Bulletin, 2012, 47, 2807-2810.	5.2	8
96	Preparations of iridium complexes containing phenanthroline ancillary ligands and electrical properties of cationic iridiumâ€based lightâ€emitting electrochemical cells. Surface and Interface Analysis, 2012, 44, 1479-1482.	1.8	11
97	Electrical properties of polymer photovoltaic cells using pentaceneâ€doped PEDOT: PSS as a hole conducting layer. Surface and Interface Analysis, 2012, 44, 1511-1514.	1.8	1
98	Performance characteristics of p-i-n hetero-junction organic photovoltaic cell with CuPc:F4-TCNQ hole transport layer. Journal of Industrial and Engineering Chemistry, 2011, 17, 799-804.	5.8	2
99	Performance Characteristics of Polymer Solar Cells with an Additive-Incorporated Active Layer. Molecular Crystals and Liquid Crystals, 2011, 538, 232-239.	0.9	0
100	Mechanical Properties of Core-Shell Rubber (CSR)/Diallyl Phthalate (DAP)/Epoxy Systems for Electronic Packaging Materials. Molecular Crystals and Liquid Crystals, 2011, 539, 190/[530]-195/[535].	0.9	5
101	Adsorption of carbon dioxide onto BDA-CP-MS41. Korean Journal of Chemical Engineering, 2010, 27, 962-969.	2.7	3
102	Improving Efficiency of Organic Photovoltaic Cells Using PEDOT:PSS and MWCNT Nanocomposites as a Hole Conducting Layer. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 484-490.	2,2	11
103	Enhanced Performance of Organic Photovoltaic Cells Using F4-TCNQ-PEDOT:PSS Films as a Hole Conducting Layer. Molecular Crystals and Liquid Crystals, 2010, 519, 252-259.	0.9	1
104	Enhanced performance of organic electroluminescence diodes with a 2-TNATA:C60 hole injection layer. Journal of Industrial and Engineering Chemistry, 2009, 15, 752-757.	5.8	7
105	Raman Spectra and Current-Voltage Characteristics of 4,4â \in 2,4â \in 3-Tris(2-naphthylphenylamino)triphenylamine Thin Films. Molecular Crystals and Liquid Crystals, 2009, 498, 183-192.	0.9	5
106	Raman Spectra of Molecularly-Ordered 1-TNATA Thin Films and Organic Electroluminescence Device Properties. Molecular Crystals and Liquid Crystals, 2009, 498, 193-202.	0.9	1
107	Molecular Ordering of Vacuum-Deposited 4,4′,4″-tris(N-(1-naphthyl)-N-phenylamino) triphenylamine Thin Films. Macromolecular Symposia, 2007, 249-250, 8-12.	0.7	0
108	Performance of ionic liquid as catalysts in the synthesis of dimethyl carbonate from ethylene carbonate and methanol. Reaction Kinetics and Catalysis Letters, 2007, 90, 3-9.	0.6	43

#	Article	IF	CITATIONS
109	Cycloaddition of carbon dioxide to epichlorohydrin using ionic liquid as a catalyst. Korean Journal of Chemical Engineering, 2007, 24, 547-550.	2.7	27
110	Performance of ionic liquid as catalyst in the copolymerization of phenyl glycidyl ether with carbon dioxide. Reaction Kinetics and Catalysis Letters, 2006, 89, 149-156.	0.6	6
111	Influence of a stacked-CuPc layer on the performance of organic light-emitting diodes. Macromolecular Research, 2006, 14, 38-44.	2.4	27
112	Photopolymerization of thermoplastic polyurethane/acrylate blends. Korean Journal of Chemical Engineering, 2005, 22, 750-754.	2.7	4
113	Cure kinetics and mechanical properties of the blend system of epoxy/diaminodiphenyl sulfone and amine terminated polyetherimide-carboxyl terminated poly(butadiene-co-acrylonitrile) block copolymer. Korean Journal of Chemical Engineering, 2005, 22, 755-761.	2.7	8
114	Copolymerization of phenyl glycidyl ether with carbon dioxide catalyzed by ionic liquids. Korean Journal of Chemical Engineering, 2005, 22, 556-559.	2.7	23
115	Influence of Morphology and Molecular Alignment of a CuPc Layer on the Current-Voltage Characteristics of OLEDs. Journal of Chemical Engineering of Japan, 2005, 38, 600-604.	0.6	4
116	Cure Kinetics and Mechanical Properties of New Polyetherimide Toughened Epoxy Resin. Journal of Chemical Engineering of Japan, 2005, 38, 623-632.	0.6	1
117	Characterization of simulated Al ₂ O ₃ -containing nuclear waste glass. Journal of Materials Science, 2004, 39, 3533-3536.	3.7	0
118	Dispersion of functional tetraphenylporphyrin-ligated metal into ultra-thin flexible acrylate films. Colloids and Surfaces B: Biointerfaces, 2004, 38, 155-160.	5.0	2
119	Dispersion of functional tetraphenylporphyrin-ligated metal into ultra-thin flexible acrylate films. Colloids and Surfaces B: Biointerfaces, 2004, 38, 161-165.	5.0	1
120	Post-Deposition-Annealing-Induced Alignment of Copper Phthalocyanine Thin Films under UV Irradiation and Their Electrical Properties. Molecular Crystals and Liquid Crystals, 2004, 425, 273-278.	0.9	0
121	In situ detection of the onset of phase separation and gelation in epoxy/anhydride/thermoplastic blends. Macromolecular Research, 2003, 11, 267-272.	2.4	19
122	Estimating diffusion-controlled reaction parameters in photoinitiated polymerization of dimethacrylate macromonomers. Macromolecular Research, 2003, 11, 311-316.	2.4	8
123	Cure reactions of epoxy/anhydride/(polyamide copolymer) blends. Macromolecular Research, 2002, 10, 259-265.	2.4	8
124	Preparation and oxygen binding properties of ultra-thin polymer films containing cobalt(II) meso-tetraphenylporphyrin via plasma polymerization. Macromolecular Research, 2002, 10, 273-277.	2.4	3
125	Characterization of cure reactions of anhydride/epoxy/polyetherimide blends. Polymer International, 2002, 51, 1353-1360.	3.1	14
126	Simple Luminescent Phenanthroimidazole Emitters for Solution-processed Non-doped Organic Light-emitting Electrochemical Cells. New Journal of Chemistry, 0, , .	2.8	3