Long Li

List of Publications by Citations

Source: https://exaly.com/author-pdf/2172363/long-li-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

35	1,283 citations	18	35
papers		h-index	g-index
35	1,760 ext. citations	9.5	4.54
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
35	Bone defect animal models for testing efficacy of bone substitute biomaterials. <i>Journal of Orthopaedic Translation</i> , 2015 , 3, 95-104	4.2	197
34	Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. <i>Biomaterials</i> , 2019 , 197, 207-219	15.6	183
33	Molecular Recognition-Based DNA Nanoassemblies on the Surfaces of Nanosized Exosomes. Journal of the American Chemical Society, 2017 , 139, 5289-5292	16.4	134
32	Self-Assembled Aptamer-Grafted Hyperbranched Polymer Nanocarrier for Targeted and Photoresponsive Drug Delivery. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 17048-17052	16.4	92
31	Bioapplications of Cell-SELEX-Generated Aptamers in Cancer Diagnostics, Therapeutics, Theranostics and Biomarker Discovery: A Comprehensive Review. <i>Cancers</i> , 2018 , 10,	6.6	65
30	Nucleic Acid Aptamers for Molecular Diagnostics and Therapeutics: Advances and Perspectives. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 2221-2231	16.4	65
29	Modulating Aptamer Specificity with pH-Responsive DNA Bonds. <i>Journal of the American Chemical Society</i> , 2018 , 140, 13335-13339	16.4	63
28	Corrosion and biocompatibility improvement of magnesium-based alloys as bone implant materials: a review. <i>International Journal of Energy Production and Management</i> , 2017 , 4, 129-137	5.3	60
27	Bacterial inhibition potential of 3D rapid-prototyped magnesium-based porous composite scaffoldsan in vitro efficacy study. <i>Scientific Reports</i> , 2015 , 5, 13775	4.9	40
26	Enhanced in Vivo Blood-Brain Barrier Penetration by Circular Tau-Transferrin Receptor Bifunctional Aptamer for Tauopathy Therapy. <i>Journal of the American Chemical Society</i> , 2020 , 142, 3862-3872	16.4	36
25	Aptamer Displacement Reaction from Live-Cell Surfaces and Its Applications. <i>Journal of the American Chemical Society</i> , 2019 , 141, 17174-17179	16.4	33
24	Identification and Characterization of DNA Aptamers Specific for Phosphorylation Epitopes of Tau Protein. <i>Journal of the American Chemical Society</i> , 2018 , 140, 14314-14323	16.4	30
23	Preparation and biocompatibility of diphasic magnetic nanocomposite scaffold. <i>Materials Science and Engineering C</i> , 2018 , 87, 70-77	8.3	29
22	Recognition-then-Reaction Enables Site-Selective Bioconjugation to Proteins on Live-Cell Surfaces. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 11954-11957	16.4	27
21	An Aptamer-Nanotrain Assembled from Six-Letter DNA Delivers Doxorubicin Selectively to Liver Cancer Cells. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 663-668	16.4	26
20	Cross-Linked Aptamer-Lipid Micelles for Excellent Stability and Specificity in Target-Cell Recognition. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 11589-11593	16.4	24
19	Use of a three-dimensional printed polylactide-coglycolide/tricalcium phosphate composite scaffold incorporating magnesium powder to enhance bone defect repair in rabbits. <i>Journal of Orthopaedic Translation</i> , 2019 , 16, 62-70	4.2	24

18	Self-Assembled Aptamer-Grafted Hyperbranched Polymer Nanocarrier for Targeted and Photoresponsive Drug Delivery. <i>Angewandte Chemie</i> , 2018 , 130, 17294-17298	3.6	23
17	Construction of bionic tissue engineering cartilage scaffold based on three-dimensional printing and oriented frozen technology. <i>Journal of Biomedical Materials Research - Part A</i> , 2018 , 106, 1664-1676	5 ^{5.4}	18
16	Lipid-oligonucleotide conjugates for bioapplications. <i>National Science Review</i> , 2020 , 7, 1933-1953	10.8	18
15	Aptamer-Directed Protein-Specific Multiple Modifications of Membrane Glycoproteins on Living Cells. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 37845-37850	9.5	15
14	Recognition-then-Reaction Enables Site-Selective Bioconjugation to Proteins on Live-Cell Surfaces. <i>Angewandte Chemie</i> , 2017 , 129, 12116-12119	3.6	13
13	Multifunctional magnesium incorporated scaffolds by 3D-Printing for comprehensive postsurgical management of osteosarcoma. <i>Biomaterials</i> , 2021 , 275, 120950	15.6	10
12	Molecular domino reactor built by automated modular synthesis for cancer treatment. <i>Theranostics</i> , 2020 , 10, 4030-4041	12.1	9
11	Bioactive PLGA/tricalcium phosphate scaffolds incorporating phytomolecule icaritin developed for calvarial defect repair in rat model. <i>Journal of Orthopaedic Translation</i> , 2020 , 24, 112-120	4.2	8
10	Quantitative determination of residual 1,4-dioxane in three-dimensional printed bone scaffold. Journal of Orthopaedic Translation, 2018, 13, 58-67	4.2	8
9	Cross-Linked Aptamer[lipid Micelles for Excellent Stability and Specificity in Target-Cell Recognition. <i>Angewandte Chemie</i> , 2018 , 130, 11763-11767	3.6	6
8	A bispecific circular aptamer tethering a built-in universal molecular tag for functional protein delivery. <i>Chemical Science</i> , 2020 , 11, 9648-9654	9.4	5
7	Precise Deposition of Polydopamine on Cancer Cell Membrane as Artificial Receptor for Targeted Drug Delivery. <i>IScience</i> , 2020 , 23, 101750	6.1	4
6	An Aptamer-Nanotrain Assembled from Six-Letter DNA Delivers Doxorubicin Selectively to Liver Cancer Cells. <i>Angewandte Chemie</i> , 2020 , 132, 673-678	3.6	4
5	Enhancing the Nucleolytic Resistance and Bioactivity of Functional Nucleic Acids by Diverse Nanostructures through in Situ Polymerization-Induced Self-assembly. <i>ChemBioChem</i> , 2021 , 22, 754-75	9 ^{3.8}	4
4	Engineering G-quadruplex aptamer to modulate its binding specificity. <i>National Science Review</i> , 2021 , 8, nwaa202	10.8	4
3	Nucleic Acid Aptamers for Molecular Diagnostics and Therapeutics: Advances and Perspectives. <i>Angewandte Chemie</i> , 2021 , 133, 2249-2259	3.6	3
2	Plasmon Coupling in DNA-Assembled Silver Nanoclusters. <i>Journal of the American Chemical Society</i> , 2021 , 143, 14573-14580	16.4	2
1	Cold atmospheric plasma for cancer treatment: molecular and immunological mechanisms. <i>IEEE Transactions on Radiation and Plasma Medical Sciences</i> , 2022 , 1-1	4.2	1