Ines Ferrer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2171979/publications.pdf Version: 2024-02-01

INES FEDDED

#	Article	IF	CITATIONS
1	Preliminary study on the use of 3D printed biodegradable polymeric sheet for the manufacturing of medical prostheses by SPIF. Procedia CIRP, 2022, 110, 76-81.	1.9	0
2	Manufacturing PLA/PCL Blends by Ultrasonic Molding Technology. Polymers, 2021, 13, 2412.	4.5	8
3	Experimental and numerical analysis of innovative processes for producing a resorbable cheekbone prosthesis. Journal of Manufacturing Processes, 2021, 70, 1-14.	5.9	12
4	On the manufacturing of highly-customized near net-shape medical implants using magnesium alloy sheet. Procedia Manufacturing, 2020, 50, 11-16.	1.9	1
5	Manufacturing of a hemispherical component combining incremental forming and superplastic forming. CIRP Journal of Manufacturing Science and Technology, 2020, 31, 178-188.	4.5	3
6	Ultrasonic Molding Technology: Recent Advances and Potential Applications in the Medical Industry. Polymers, 2019, 11, 667.	4.5	27
7	The effect of weld line on tensile strength of polyphenylsulfone (PPSU) in ultrasonic micro-moulding technology. International Journal of Advanced Manufacturing Technology, 2019, 103, 2391-2400.	3.0	6
8	Early design of a French Horn's support for younger players (students from 7 to 12 years). Procedia Manufacturing, 2019, 41, 1141-1148.	1.9	0
9	Effect of the main process parameters on the mechanical strength of polyphenylsulfone (PPSU) in ultrasonic micro-moulding process. Ultrasonics Sonochemistry, 2018, 46, 46-58.	8.2	20
10	Customized cranial implant manufactured by incremental sheet forming using a biocompatible polymer. Rapid Prototyping Journal, 2018, 24, 120-129.	3.2	27
11	Characterizing Ultrasonic Micro-Molding Process of Polyetheretherketone (PEEK). International Polymer Processing, 2018, 33, 442-452.	0.5	16
12	Process Parameter Effects on Biocompatible Thermoplastic Sheets Produced by Incremental Forming. Materials, 2018, 11, 1377.	2.9	15
13	Replicability of Ultrasonic Molding for Processing Thin-Wall Polystyrene Plates with a Microchannel. Materials, 2018, 11, 1320.	2.9	15
14	Feasibility of manufacturing low aspect ratio parts of PLA by ultrasonic moulding technology. Procedia Manufacturing, 2017, 13, 251-258.	1.9	8
15	Micro injection molding processing of UHMWPE using ultrasonic vibration energy. Materials and Design, 2017, 132, 1-12.	7.0	54
16	Breast Cancer Stem Cell Culture and Enrichment Using Poly(ε-Caprolactone) Scaffolds. Molecules, 2016, 21, 537.	3.8	37
17	New method for medical devices design and manufacture: Case study—scapholunate implant. Advances in Mechanical Engineering, 2016, 8, 168781401667254.	1.6	0
18	Influence of processing conditions on manufacturing polyamide parts by ultrasonic molding. Materials and Design, 2016, 98, 20-30.	7.0	41

Ines Ferrer

#	Article	IF	CITATIONS
19	Assessing a stepped sonotrode in ultrasonic molding technology. Journal of Materials Processing Technology, 2016, 229, 687-696.	6.3	27
20	Study of the Ultrasonic Molding Process Parameters for Manufacturing Polypropylene Parts. Procedia Engineering, 2015, 132, 7-14.	1.2	18
21	On the Rule of Mixtures for Predicting Stress-Softening and Residual Strain Effects in Biological Tissues and Biocompatible Materials. Materials, 2014, 7, 441-456.	2.9	17
22	A Transformation Method for Solving Conservative Nonlinear Two-Degree-of-Freedom Systems. Mathematical Problems in Engineering, 2014, 2014, 1-14.	1.1	3
23	Optimization of process parameters for pulsed laser milling of micro-channels on AISI H13 tool steel. Robotics and Computer-Integrated Manufacturing, 2013, 29, 209-218.	9.9	91
24	The Effect of Process Parameters on the Energy Consumption in Single Point Incremental Forming. Procedia Engineering, 2013, 63, 346-353.	1.2	14
25	Influence of the Process Parameters to Manufacture Micro-cavities by Electro Discharge Machining (EDM). Procedia Engineering, 2013, 63, 499-505.	1.2	9
26	Designing and Prototyping of New Device for Scapholunate Ligament Repair. Procedia CIRP, 2013, 5, 270-275.	1.9	4
27	Equivalent Representation Form of Oscillators with Elastic and Damping Nonlinear Terms. Mathematical Problems in Engineering, 2013, 2013, 1-11.	1.1	1
28	Experimental Analysis of Laser Micro-Machining Process Parameters. Materials Science Forum, 2012, 713, 67-72.	0.3	0
29	Studying the relation between corrosion and surface roughness. , 2012, , .		2
30	An experimental analysis of process parameters to manufacture micro-channels in AISI H13 tempered steel by laser micro-milling. , 2012, , .		1
31	A model to build manufacturing process chains during embodiment design phases. International Journal of Advanced Manufacturing Technology, 2012, 59, 421-432.	3.0	9
32	Methodology for capturing and formalizing DFM Knowledge. Robotics and Computer-Integrated Manufacturing, 2010, 26, 420-429.	9.9	26
33	An approach to integrate manufacturing process information in part design phases. Journal of Materials Processing Technology, 2009, 209, 2085-2091.	6.3	29
34	Sound mapping for identification of stability lobe diagrams in milling processes. International Journal of Machine Tools and Manufacture, 2009, 49, 203-211.	13.4	51
35	A model for integrating process planning and production planning and control in machining processes. Robotics and Computer-Integrated Manufacturing, 2008, 24, 532-544.	9.9	34
36	Springback determination of sheet metals in an air bending process based on an experimental work. Journal of Materials Processing Technology, 2007, 191, 174-177.	6.3	77

#	Article	IF	CITATIONS
37	Activity model and computer aided system for defining sheet metal process planning. Journal of Materials Processing Technology, 2006, 173, 213-222.	6.3	25
38	Experimental Introduction to Forced and Self-Excited Vibrations in Milling Processes and Identification of Stability Lobes Diagrams. Materials Science Forum, 0, 692, 24-32.	0.3	1