Ana I Neto

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/217148/ana-i-neto-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

15	855	14	15
papers	citations	h-index	g-index
15	930 ext. citations	9.6	3.87
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
15	Bioinspired multilayer membranes as potential adhesive patches for skin wound healing. Biomaterials Science, 2018 , 6, 1962-1975	7.4	38
14	3D Cell Culture: Fabrication of Hydrogel Particles of Defined Shapes Using Superhydrophobic-Hydrophilic Micropatterns (Adv. Mater. 35/2016). <i>Advanced Materials</i> , 2016 , 28, 755.	2 -75 52	1
13	High-Throughput Topographic, Mechanical, and Biological Screening of Multilayer Films Containing Mussel-Inspired Biopolymers. <i>Advanced Functional Materials</i> , 2016 , 26, 2745-2755	15.6	43
12	Fabrication of Hydrogel Particles of Defined Shapes Using Superhydrophobic-Hydrophilic Micropatterns. <i>Advanced Materials</i> , 2016 , 28, 7613-9	24	63
11	A novel hanging spherical drop system for the generation of cellular spheroids and high throughput combinatorial drug screening. <i>Biomaterials Science</i> , 2015 , 3, 581-5	7.4	58
10	In vivo high-content evaluation of three-dimensional scaffolds biocompatibility. <i>Tissue Engineering - Part C: Methods</i> , 2014 , 20, 851-64	2.9	23
9	Superhydrophobic chips for cell spheroids high-throughput generation and drug screening. <i>ACS Applied Materials & District Applied & District Applied</i>	9.5	84
8	Nanostructured polymeric coatings based on chitosan and dopamine-modified hyaluronic acid for biomedical applications. <i>Small</i> , 2014 , 10, 2459-69	11	131
7	Biomimetic Miniaturized Platform Able to Sustain Arrays of Liquid Droplets for High-Throughput Combinatorial Tests. <i>Advanced Functional Materials</i> , 2014 , 24, 5096-5103	15.6	50
6	Nanostructured hollow tubes based on chitosan and alginate multilayers. <i>Advanced Healthcare Materials</i> , 2014 , 3, 433-40	10.1	46
5	Combining biomimetic principles from the lotus leaf and mussel adhesive: polystyrene films with superhydrophobic and adhesive layers. <i>RSC Advances</i> , 2013 , 3, 9352	3.7	31
4	Adhesive nanostructured multilayer films using a bacterial exopolysaccharide for biomedical applications. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 2367-2374	7.3	63
3	Wettable arrays onto superhydrophobic surfaces for bioactivity testing of inorganic nanoparticles. <i>Materials Letters</i> , 2011 , 65, 296-299	3.3	28
2	High-throughput evaluation of interactions between biomaterials, proteins and cells using patterned superhydrophobic substrates. <i>Soft Matter</i> , 2011 , 7, 4147	3.6	96
1	Two-Dimensional Open Microfluidic Devices by Tuning the Wettability on Patterned Superhydrophobic Polymeric Surface. <i>Applied Physics Express</i> , 2010 , 3, 085205	2.4	100