
Firat Güder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/217100/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sensors in blockchain. Trends in Biotechnology, 2022, 40, 141-144.	9.3	12
2	Multiplexed immunosensors for point-of-care diagnostic applications. Biosensors and Bioelectronics, 2022, 203, 114050.	10.1	69
3	Paper-based sensors for diagnostics, human activity monitoring, food safety and environmental detection. Sensors & Diagnostics, 2022, 1, 312-342.	3.8	32
4	Bioinspired Stretchable Transducer for Wearable Continuous Monitoring of Respiratory Patterns in Humans and Animals. Advanced Materials, 2022, 34, .	21.0	7
5	Wearable devices for the detection of COVID-19. Nature Electronics, 2021, 4, 13-14.	26.0	174
6	The future of near-field communication-based wireless sensing. Nature Reviews Materials, 2021, 6, 286-288.	48.7	47
7	Nonâ€Invasive Diagnostics: Integrated Devices for Nonâ€Invasive Diagnostics (Adv. Funct. Mater. 15/2021). Advanced Functional Materials, 2021, 31, 2170105.	14.9	2
8	Low-Cost Optical Assays for Point-of-Care Diagnosis in Resource-Limited Settings. ACS Sensors, 2021, 6, 2108-2124.	7.8	58
9	Integrated Devices for Nonâ€Invasive Diagnostics. Advanced Functional Materials, 2021, 31, 2010388.	14.9	51
10	Self-powered ultrasensitive and highly stretchable temperature–strain sensing composite yarns. Materials Horizons, 2021, 8, 2513-2519.	12.2	21
11	Point-of-use sensors and machine learning enable low-cost determination of soil nitrogen. Nature Food, 2021, 2, 981-989.	14.0	16
12	Disposable silicon-based all-in-one micro-qPCR for rapid on-site detection of pathogens. Nature Communications, 2020, 11, 6176.	12.8	19
13	Clinical detection of neurodegenerative blood biomarkers using graphene immunosensor. Carbon, 2020, 168, 144-162.	10.3	30
14	Wireless Acoustic Sensors: Stretchable Composite Acoustic Transducer for Wearable Monitoring of Vital Signs (Adv. Funct. Mater. 16/2020). Advanced Functional Materials, 2020, 30, 2070104.	14.9	0
15	Stretchable Composite Acoustic Transducer for Wearable Monitoring of Vital Signs. Advanced Functional Materials, 2020, 30, 1910288.	14.9	28
16	Toward Continuous Monitoring of Breath Biochemistry: A Paper-Based Wearable Sensor for Real-Time Hydrogen Peroxide Measurement in Simulated Breath. ACS Sensors, 2019, 4, 2945-2951.	7.8	138
17	Monolithic Solder-On Nanoporous Si-Cu Contacts for Stretchable Silicone Composite Sensors. ACS Applied Materials & Interfaces, 2019, 11, 47577-47586.	8.0	8
18	Cellulose Fibers Enable Near-Zero-Cost Electrical Sensing of Water-Soluble Gases. ACS Sensors, 2019, 4, 1662-1669.	7.8	114

Firat Güder

#	Article	IF	CITATIONS
19	Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. Advanced Materials, 2019, 31, e1806739.	21.0	540
20	Soft Robotic Surrogate Lung. ACS Applied Bio Materials, 2019, 2, 1490-1497.	4.6	17
21	Fabric Electronics: Autocatalytic Metallization of Fabrics Using Si Ink, for Biosensors, Batteries and Energy Harvesting (Adv. Funct. Mater. 1/2019). Advanced Functional Materials, 2019, 29, 1970002.	14.9	0
22	Autocatalytic Metallization of Fabrics Using Si Ink, for Biosensors, Batteries and Energy Harvesting. Advanced Functional Materials, 2019, 29, 1804798.	14.9	27
23	Electrical Textile Valves for Paper Microfluidics. Advanced Materials, 2017, 29, 1702894.	21.0	60
24	Paper Actuators: Electrically Activated Paper Actuators (Adv. Funct. Mater. 15/2016). Advanced Functional Materials, 2016, 26, 2398-2398.	14.9	2
25	Paperâ€Based Electrical Respiration Sensor. Angewandte Chemie - International Edition, 2016, 55, 5727-5732.	13.8	350
26	Electrically Activated Paper Actuators. Advanced Functional Materials, 2016, 26, 2446-2453.	14.9	135
27	A Simple Approach for Molecular Controlled Release based on Atomic Layer Deposition Hybridized Organic-Inorganic Layers. Scientific Reports, 2016, 6, 19574.	3.3	20
28	Integrating Electronics and Microfluidics on Paper. Advanced Materials, 2016, 28, 5054-5063.	21.0	216
29	Paperâ€Based Electrical Respiration Sensor. Angewandte Chemie, 2016, 128, 5821-5826.	2.0	38
30	Analytical Devices Based on Direct Synthesis of DNA on Paper. Analytical Chemistry, 2016, 88, 725-731.	6.5	38
31	Enhancing the quality of the tomography of nanoporous materials for better understanding of polymer electrolyte fuel cell materials. Journal of Power Sources, 2015, 285, 413-417.	7.8	42
32	Stepped Moduli in Layered Composites. Advanced Functional Materials, 2014, 24, 7197-7204.	14.9	15
33	Electronic nose for toxic gas detection based on photostimulated core–shell nanowires. RSC Advances, 2014, 4, 35084-35088.	3.6	30
34	Engineered High Aspect Ratio Vertical Nanotubes as a Model System for the Investigation of Catalytic Methanol Synthesis Over Cu/ZnO. ACS Applied Materials & Interfaces, 2014, 6, 1576-1582.	8.0	9
35	Detection of real-time dynamics of drug–target interactions by ultralong nanowalls. Lab on A Chip, 2013, 13, 4173.	6.0	12
36	Antisolvent Crystallization Approach to Construction of Cul Superstructures with Defined Geometries. ACS Nano, 2013, 7, 2820-2828.	14.6	26

Firat Güder

#	Article	IF	CITATIONS
37	Tracing the Migration History of Metal Catalysts in Metal-Assisted Chemically Etched Silicon. ACS Nano, 2013, 7, 1583-1590.	14.6	27
38	Largeâ€Scale Nano Piezo Force Position Arrays as Ultrahighâ€Resolution Micro―and Nanoparticle Tracker. Advanced Functional Materials, 2013, 23, 191-197.	14.9	12
39	Lithography: Largeâ€Scale Nano Piezo Force Position Arrays as Ultrahighâ€Resolution Micro―and Nanoparticle Tracker (Adv. Funct. Mater. 2/2013). Advanced Functional Materials, 2013, 23, 264-264.	14.9	0
40	Superior Functionality by Design: Selective Ozone Sensing Realized by Rationally Constructed Highâ€Index ZnO Surfaces. Small, 2012, 8, 3307-3314.	10.0	23
41	Homoepitaxial Branching: An Unusual Polymorph of Zinc Oxide Derived from Seeded Solution Growth. ACS Nano, 2012, 6, 7133-7141.	14.6	47
42	Bringing Order to the World of Nanowire Devices by Phase Shift Lithography. Nano Letters, 2011, 11, 3513-3518.	9.1	23
43	Toward Discrete Multilayered Composite Structures: Do Hollow Networks Form in a Polycrystalline Infinite Nanoplane by the Kirkendall Effect?. Chemistry of Materials, 2011, 23, 4445-4451.	6.7	13
44	Multifunctional ZnO-Nanowire-Based Sensor. Advanced Functional Materials, 2011, 21, 4342-4348.	14.9	105
45	Regulated Oxidation of Nickel in Multisegmented Nickel–Platinum Nanowires: An Entry to Wavy Nanopeapods. Angewandte Chemie - International Edition, 2011, 50, 10855-10858.	13.8	21
46	Improved optical properties of ZnO thin films by concurrently introduced interfacial voids during thermal annealing. Applied Physics Letters, 2011, 99, .	3.3	20
47	Controlled Positioning of Large Interfacial Nanocavities via Stressâ€Engineered Void Localization. Small, 2010, 6, 1603-1607.	10.0	27
48	Atomic Layer Deposition on Phase-Shift Lithography Generated Photoresist Patterns for 1D Nanochannel Fabrication. ACS Applied Materials & Interfaces, 2010, 2, 3473-3478.	8.0	20