Mubbashar Nazeer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2170960/publications.pdf

Version: 2024-02-01

361413 526287 1,140 53 20 27 citations h-index g-index papers 53 53 53 271 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	<scp>MHD</scp> twoâ€phase flow of <scp>Jeffrey</scp> fluid suspended with Hafnium and crystal particles: Analytical treatment. Numerical Methods for Partial Differential Equations, 2024, 40, .	3.6	7
2	Perturbation based analytical solutions of nonâ€Newtonian differential equation with heat and mass transportation between horizontal permeable channel. Numerical Methods for Partial Differential Equations, 2024, 40, .	3.6	6
3	Mathematical modeling of <scp>bioâ€magnetic</scp> fluid bounded within ciliated walls of wavy channel. Numerical Methods for Partial Differential Equations, 2024, 40, .	3.6	20
4	Effects of radiative heat flux and heat generation on magnetohydodynamics natural convection flow of <scp>nanofluid</scp> inside a porous triangular cavity with thermal boundary conditions. Numerical Methods for Partial Differential Equations, 2024, 40, .	3.6	18
5	Impact of nano metallic particles and magnetic force on multi-phase flow of third-grade fluid in divergent channel: analytical study. International Journal of Modelling and Simulation, 2023, 43, 426-437.	3.3	2
6	Impact of gold and silver nanoparticles in highly viscous flows with different body forces. International Journal of Modelling and Simulation, 2023, 43, 376-392.	3.3	10
7	Mathematical modeling of multiphase flows of third-grade fluid with lubrication effects through an inclined channel: analytical treatment. Journal of Dispersion Science and Technology, 2022, 43, 1555-1567.	2.4	21
8	Mathematical Modeling and MHD Flow of Micropolar Fluid Toward an Exponential Curved Surface: Heat Analysis via Ohmic Heating and Heat Source/Sink. Arabian Journal for Science and Engineering, 2022, 47, 867-878.	3.0	17
9	Mathematical modeling and numerical solution of crossâ€flow of nonâ€Newtonian fluid: Effects of viscous dissipation and slip boundary conditions. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2022, 102, e202100130.	1.6	5
10	Theoretical investigation of thermal analysis in aluminum and titanium alloys filled in nanofluid through a square cavity having the uniform thermal condition. International Journal of Modern Physics B, 2022, 36, .	2.0	22
11	Impact of slip boundary conditions, magnetic force, and porous medium on blood flow of Jeffrey fluid. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2022, 102, .	1.6	8
12	Perturbation solution of the multiphase flows of third grade dispersions suspended with Hafnium and crystal particles. Surfaces and Interfaces, 2021, 22, 100803.	3.0	31
13	Interpretation of entropy generation in Williamson fluid flow with nonlinear thermal radiation and firstâ€order velocity slip. Mathematical Methods in the Applied Sciences, 2021, 44, 7756-7765.	2.3	28
14	Numerical simulation of squeezing flow Jeffrey nanofluid confined by two parallel disks with the help of chemical reaction: effects of activation energy and microorganisms. International Journal of Chemical Reactor Engineering, 2021, 19, 717-725.	1.1	27
15	Two-phase flow of MHD Jeffrey fluid with the suspension of tiny metallic particles incorporated with viscous dissipation and Porous Medium. Advances in Mechanical Engineering, 2021, 13, 168781402110059.	1.6	27
16	Simultaneous effects of Brownian motion and thermophoretic force on Eyring–Powell fluid through porous geometry. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2021, 76, 569-580.	1.5	14
17	Mathematical modeling of bio-magnetic fluid bounded by ciliated walls of wavy channel incorporated with viscous dissipation: Discarding mucus from lungs and blood streams. International Communications in Heat and Mass Transfer, 2021, 124, 105274.	5. 6	25
18	A comparative study of MHD fluid-particle suspension induced by metachronal wave under the effects of lubricated walls. International Journal of Modern Physics B, 2021, 35, 2150204.	2.0	19

#	Article	IF	CITATIONS
19	Numerical analysis of multiphase flow of couple stress fluid thermally effected by moving surface. International Journal of Modern Physics B, 2021, 35, 2150188.	2.0	14
20	Theoretical study of an unsteady ciliary hemodynamic fluid flow subject to the Newton's boundary conditions. Advances in Mechanical Engineering, 2021, 13, 168781402110404.	1.6	11
21	Flow of nanofluid towards a Riga surface with heat and mass transfer under the effects of activation energy and thermal radiation. International Journal of Modern Physics B, 2021, 35, .	2.0	9
22	Thermal analysis of blood flow of Newtonian, pseudo-plastic, and dilatant fluids through an inclined wavy channel due to metachronal wave of cilia. Advances in Mechanical Engineering, 2021, 13, 168781402110490.	1.6	14
23	Development of mathematical modeling of multi-phase flow of Casson rheological fluid: Theoretical approach. Chaos, Solitons and Fractals, 2021, 150, 111198.	5.1	25
24	Thermal analysis of Casson rheological fluid with gold nanoparticles under the impact of gravitational and magnetic forces. Case Studies in Thermal Engineering, 2021, 28, 101433.	5.7	38
25	Numerical and perturbation solutions of cross flow of an Eyring-Powell fluid. SN Applied Sciences, 2021, 3, 1.	2.9	43
26	Computational study of solid-liquid supercritical flow of 4th-grade fluid through magnetized surface. Physica Scripta, 2021, 96, 015201.	2.5	19
27	Velocity and thermal slip effects on two-phase flow of MHD Jeffrey fluid with the suspension of tiny metallic particles. Physica Scripta, 2021, 96, 025803.	2.5	28
28	Mathematical modeling of MHD Jeffrey nanofluid in a microchannel incorporated with lubrication effects: a Graetz problem. Physica Scripta, 2021, 96, 025225.	2.5	26
29	Electro-osmotic flow of biological fluid in divergent channel: drug therapy in compressed capillaries. Scientific Reports, 2021, 11, 23652.	3.3	19
30	Effects of radiative heat flux and joule heating on electro-osmotically flow of non-Newtonian fluid: Analytical approach. International Communications in Heat and Mass Transfer, 2020, 117, 104744.	5.6	48
31	Role of dipole interactions in Darcy–Forchheimer first-order velocity slip nanofluid flow of Williamson model with Robin conditions. Applied Nanoscience (Switzerland), 2020, 10, 5343-5350.	3.1	11
32	Perturbation and numerical solutions of nonâ€Newtonian fluid bounded within in a porous channel: Applications of pseudoâ€spectral collocation method. Numerical Methods for Partial Differential Equations, 2020, , .	3.6	2
33	Heat and Mass Transfer of Temperature-Dependent Viscosity Models in a Pipe: Effects of Thermal Radiation and Heat Generation. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2020, 75, 225-239.	1.5	27
34	Numerical and perturbation solutions of third-grade fluid in a porous channel: Boundary and thermal slip effects. Pramana - Journal of Physics, 2020, 94, 1.	1.8	39
35	Numerical solution for flow of a Eyring–Powell fluid in a pipe with prescribed surface temperature. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	1.6	34
36	Numerical analysis of the full MHD model with the Galerkin finite-element method. European Physical Journal Plus, 2019, 134, 1.	2.6	21

#	Article	IF	Citations
37	Finite element simulations for energy transfer in a lid-driven porous square container filled with micropolar fluid: Impact of thermal boundary conditions and Peclet number. International Journal of Hydrogen Energy, 2019, 44, 7656-7666.	7.1	28
38	Effects of Constant and Space-Dependent Viscosity on Eyring–Powell Fluid in a Pipe: Comparison of the Perturbation and Explicit Finite Difference Methods. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2019, 74, 961-969.	1.5	30
39	Finite element analysis of bi-viscosity fluid enclosed in a triangular cavity under thermal and magnetic effects. European Physical Journal Plus, 2019, 134, 1.	2.6	33
40	Numerical simulations of MHD forced convection flow of micropolar fluid inside a right-angled triangular cavity saturated with porous medium: Effects of vertical moving wall. Canadian Journal of Physics, 2019, 97, 1-13.	1.1	34
41	FULLY DEVELOPED BUBBLY TWO-PHASE FLOW THROUGH A PIPE: AN ANALYTICAL SOLUTION. WIT Transactions on Engineering Sciences, 2019, , .	0.0	0
42	Flow and Heat Transfer Analysis of an Eyring–Powell Fluid in a Pipe. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2018, 73, 265-274.	1.5	47
43	Numerical simulation of MHD flow of micropolar fluid inside a porous inclined cavity with uniform and non-uniform heated bottom wall. Canadian Journal of Physics, 2018, 96, 576-593.	1.1	50
44	Effects of moving wall on the flow of micropolar fluid inside a right angle triangular cavity. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 2404-2422.	2.8	32
45	Natural convection through spherical particles of a micropolar fluid enclosed in a trapezoidal porous container. European Physical Journal Plus, 2018, 133, 1.	2.6	28
46	A numerical study of micropolar flow inside a lid-driven triangular enclosure. Meccanica, 2018, 53, 3279-3299.	2.0	29
47	BUOYANCY-DRIVEN CAVITY FLOW OF A MICROPOLAR FLUID WITH VARIABLY HEATED BOTTOM WALL. Heat Transfer Research, 2018, 49, 457-481.	1.6	35
48	Mathematical modeling and simulation of MHD electro-osmotic flow of Jeffrey fluid in convergent geometry. Waves in Random and Complex Media, 0 , , 1 - 17 .	2.7	19
49	Heat transmission in a magnetohydrodynamic multiphase flow induced by metachronal propulsion through porous media with thermal radiation. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 0, , 095440892210752.	2.5	12
50	Numerical solution of gyrotactic microorganism flow of nanofluid over a Riga plate with the characteristic of chemical reaction and convective condition. Waves in Random and Complex Media, 0, , 1-23.	2.7	7
51	Numerical study of squeezing flow past a Riga plate with activation energy and chemical reactions: effects of convective and second-order slip boundary conditions. Waves in Random and Complex Media, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0	2.7	4
52	A note on the multiphase flow of third grade fluid with wall properties. Waves in Random and Complex Media, 0 , , 1 - 16 .	2.7	4
53	Theoretical study of transport of MHD peristaltic flow of fluid under the impact of viscous dissipation. Waves in Random and Complex Media, 0, , 1-22.	2.7	13