
Ying Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2170947/publications.pdf Version: 2024-02-01

VINC XIA

#	Article	IF	CITATIONS
1	Genetic Control of MAP3K1 in Eye Development and Sex Differentiation. Cells, 2022, 11, 34.	4.1	4
2	The combined effects of Map3k1 mutation and dioxin on differentiation of keratinocytes derived from mouse embryonic stem cells. Scientific Reports, 2022, 12, .	3.3	1
3	Isolation and long-term expansion of murine epidermal stem-like cells. PLoS ONE, 2021, 16, e0254731.	2.5	8
4	Calponin-3 deficiency augments contractile activity, plasticity, fibrogenic response and Yap/Taz transcriptional activation in lens epithelial cells and explants. Scientific Reports, 2020, 10, 1295.	3.3	11
5	Repression of MAP3K1 expression and JNK activity by canonical Wnt signaling. Developmental Biology, 2018, 440, 129-136.	2.0	11
6	Meibomian gland morphogenesis requires developmental eyelid closure and lid fusion. Ocular Surface, 2017, 15, 704-712.	4.4	17
7	Magnetic resonance imaging study of eye congenital birth defects in mouse model. Molecular Vision, 2017, 23, 572-578.	1.1	1
8	Repression of the Aryl Hydrocarbon Receptor Is Required to Maintain Mitotic Progression and Prevent Loss of Pluripotency of Embryonic Stem Cells. Stem Cells, 2016, 34, 2825-2839.	3.2	40
9	Loss of Il̂ºB kinase l̂² promotes myofibroblast transformation and senescence through activation of the ROS-TGFl̂² autocrine loop. Protein and Cell, 2016, 7, 338-350.	11.0	10
10	Corneal Wound Healing Requires IKB kinase \hat{I}^2 Signaling in Keratocytes. PLoS ONE, 2016, 11, e0151869.	2.5	11
11	Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult. PLoS ONE, 2015, 10, e0142440.	2.5	42
12	Long-term Coexposure to Hexavalent Chromium and B[<i>a</i>]P Causes Tissue-Specific Differential Biological Effects in Liver and Gastrointestinal Tract of Mice. Toxicological Sciences, 2015, 146, 52-64.	3.1	12
13	Gene-Environment Interactions Target Mitogen-activated Protein 3 Kinase 1 (MAP3K1) Signaling in Eyelid Morphogenesis. Journal of Biological Chemistry, 2015, 290, 19770-19779.	3.4	10
14	MAP3K1 function is essential for cyto-architecture of mouse organ of Corti and survival of auditory hair cells. DMM Disease Models and Mechanisms, 2015, 8, 1543-53.	2.4	13
15	Expression of Signaling Components in Embryonic Eyelid Epithelium. PLoS ONE, 2014, 9, e87038.	2.5	5
16	Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) Analysis Uncovers Broad Changes in Chromatin Structure Resulting from Hexavalent Chromium Exposure. PLoS ONE, 2014, 9, e97849.	2.5	9
17	Long-term exposure to low-concentrations of Cr(VI) induce DNA damage and disrupt the transcriptional response to benzo[a]pyrene. Toxicology, 2014, 316, 14-24.	4.2	31
18	Pluripotency factors and Polycomb Group proteins repress aryl hydrocarbon receptor expression in murine embryonic stem cells. Stem Cell Research, 2014, 12, 296-308.	0.7	35

YING XIA

#	Article	IF	CITATIONS
19	Eyelid Closure in Embryogenesis Is Required for Ocular Adnexa Development. , 2014, 55, 7652.		34
20	Epithelial sheet movement requires the cooperation of c-Jun and MAP3K1. Developmental Biology, 2014, 395, 29-37.	2.0	10
21	Deciphering gene expression program of MAP3K1 in mouse eyelid morphogenesis. Developmental Biology, 2013, 374, 96-107.	2.0	13
22	Loss of MAP3K1 enhances proliferation and apoptosis during retinal development. Development (Cambridge), 2011, 138, 4001-4012.	2.5	22
23	Mitogen-activated protein kinase kinase kinase 1 (MAP3K1) integrates developmental signals for eyelid closure. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17349-17354.	7.1	39
24	ll̂ºB Kinase β Regulates Epithelium Migration during Corneal Wound Healing. PLoS ONE, 2011, 6, e16132.	2.5	24
25	Minor Abnormalities of Testis Development in Mice Lacking the Gene Encoding the MAPK Signalling Component, MAP3K1. PLoS ONE, 2011, 6, e19572.	2.5	55
26	Differential transmission of MEKK1 morphogenetic signals by JNK1 and JNK2. Development (Cambridge), 2008, 135, 23-32.	2.5	45
27	Mitogen-activated Protein Kinase Kinase Kinase 1 Protects against Nickel-induced Acute Lung Injury. Toxicological Sciences, 2008, 104, 405-411.	3.1	17
28	A Role for the Mitogen-activated Protein Kinase Kinase Kinase 1 in Epithelial Wound Healing. Molecular Biology of the Cell, 2006, 17, 3446-3455.	2.1	64
29	c-Jun: A Complex Tale of a Simple Transcription Factor. , 2006, , 219-237.		1
30	Biochemical Responses to Dioxins: Which Genes? Which Endpoints?. , 2005, , 533-558.		1
31	MEKK1 Transduces Activin Signals in Keratinocytes To Induce Actin Stress Fiber Formation and Migration. Molecular and Cellular Biology, 2005, 25, 60-65.	2.3	103
32	Jun Turnover Is Controlled Through JNK-Dependent Phosphorylation of the E3 Ligase Itch. Science, 2004, 306, 271-275.	12.6	361
33	The control of cell motility and epithelial morphogenesis by Jun kinases. Trends in Cell Biology, 2004, 14, 94-101.	7.9	231
34	The signaling pathways in tissue morphogenesis: a lesson from mice with eye-open at birth phenotype. Biochemical Pharmacology, 2004, 68, 997-1001.	4.4	34
35	A role for MEK kinase 1 in TGF-Â/activin-induced epithelium movement and embryonic eyelid closure. EMBO Journal, 2003, 22, 4443-4454.	7.8	161
36	MEK kinase 1 regulates c-Jun phosphorylation in the control of corneal morphogenesis. Molecular Vision, 2003, 9, 584-93.	1.1	15

#	Article	IF	Citations
37	Activation of mitogen-activated protein kinases (MAPKs) by aromatic hydrocarbons: role in the regulation of aryl hydrocarbon receptor (AHR) function. Biochemical Pharmacology, 2002, 64, 771-780.	4.4	154
38	Map3k1. The AFCS-nature Molecule Pages, 0, , .	0.2	14