List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2170870/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spectral Analysis Identifies Sites of High-Frequency Activity Maintaining Atrial Fibrillation in Humans. Circulation, 2005, 112, 789-797.	1.6	785
2	Stable Microreentrant Sources as a Mechanism of Atrial Fibrillation in the Isolated Sheep Heart. Circulation, 2000, 101, 194-199.	1.6	710
3	A Novel Form of Short QT Syndrome (SQT3) Is Caused by a Mutation in the KCNJ2 Gene. Circulation Research, 2005, 96, 800-807.	2.0	575
4	Mother rotors and fibrillatory conduction: a mechanism of atrial fibrillation. Cardiovascular Research, 2002, 54, 204-216.	1.8	522
5	Spatiotemporal Periodicity During Atrial Fibrillation in the Isolated Sheep Heart. Circulation, 1998, 98, 1236-1248.	1.6	459
6	Mechanisms of Wave Fractionation at Boundaries of High-Frequency Excitation in the Posterior Left Atrium of the Isolated Sheep Heart During Atrial Fibrillation. Circulation, 2006, 113, 626-633.	1.6	386
7	Left-to-Right Gradient of Atrial Frequencies During Acute Atrial Fibrillation in the Isolated Sheep Heart. Circulation, 2001, 103, 2631-2636.	1.6	343
8	Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm, 2009, 6, 33-40.	0.3	319
9	Intra-Atrial Pressure Increases Rate and Organization of Waves Emanating From the Superior Pulmonary Veins During Atrial Fibrillation. Circulation, 2003, 108, 668-671.	1.6	311
10	Spatial Distribution of Fibrosis Governs Fibrillation Wave Dynamics in the Posterior Left Atrium During Heart Failure. Circulation Research, 2007, 101, 839-847.	2.0	297
11	Rectification of the Background Potassium Current. Circulation Research, 2001, 89, 1216-1223.	2.0	289
12	Purkinje-Muscle Reentry as a Mechanism of Polymorphic Ventricular Arrhythmias in a 3-Dimensional Model of the Ventricles. Circulation Research, 1998, 82, 1063-1077.	2.0	287
13	Arrhythmogenic Mechanisms in a Mouse Model of Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation Research, 2007, 101, 1039-1048.	2.0	252
14	Activation of Inward Rectifier Potassium Channels Accelerates Atrial Fibrillation in Humans. Circulation, 2006, 114, 2434-2442.	1.6	249
15	Ionic Determinants of Functional Reentry in a 2-D Model of Human Atrial Cells During Simulated Chronic Atrial Fibrillation. Biophysical Journal, 2005, 88, 3806-3821.	0.2	232
16	Distribution of Excitation Frequencies on the Epicardial and Endocardial Surfaces of Fibrillating Ventricular Wall of the Sheep Heart. Circulation Research, 2000, 86, 408-417.	2.0	231
17	Electrotonic Myofibroblast-to-Myocyte Coupling Increases Propensity to Reentrant Arrhythmias in Two-Dimensional Cardiac Monolayers. Biophysical Journal, 2008, 95, 4469-4480.	0.2	210
18	Frequency-Dependent Breakdown of Wave Propagation Into Fibrillatory Conduction Across the Pectinate Muscle Network in the Isolated Sheep Right Atrium. Circulation Research, 2002, 90, 1173-1180.	2.0	181

#	Article	IF	CITATIONS
19	High-Frequency Periodic Sources Underlie Ventricular Fibrillation in the Isolated Rabbit Heart. Circulation Research, 2000, 86, 86-93.	2.0	168
20	Spatially Distributed Dominant Excitation Frequencies Reveal Hidden Organization in Atrial Fibrillation in the Langendorff-Perfused Sheep Heart. Journal of Cardiovascular Electrophysiology, 2000, 11, 869-879.	0.8	167
21	Cholinergic atrial fibrillation: IK,ACh gradients determine unequal left/right atrial frequencies and rotor dynamics. Cardiovascular Research, 2003, 59, 863-873.	1.8	167
22	AF Ablation Guided by Spatiotemporal Electrogram DispersionÂWithout Pulmonary Vein Isolation. Journal of the American College of Cardiology, 2017, 69, 303-321.	1.2	162
23	Rotor meandering contributes to irregularity in electrograms during atrial fibrillation. Heart Rhythm, 2008, 5, 846-854.	0.3	157
24	An Injectable 64 nW ECG Mixed-Signal SoC in 65 nm for Arrhythmia Monitoring. IEEE Journal of Solid-State Circuits, 2015, 50, 375-390.	3.5	149
25	Dominant Frequency Increase Rate Predicts Transition from Paroxysmal to Long-Term Persistent Atrial Fibrillation. Circulation, 2014, 129, 1472-1482.	1.6	144
26	Blockade of the Inward Rectifying Potassium Current Terminates Ventricular Fibrillation in the Guinea Pig Heart. Journal of Cardiovascular Electrophysiology, 2003, 14, 621-631.	0.8	138
27	Up-regulation of the inward rectifier K+current (IK1) in the mouse heart accelerates and stabilizes rotors. Journal of Physiology, 2007, 578, 315-326.	1.3	137
28	Heterogeneous atrial wall thickness and stretch promote scroll waves anchoring during atrial fibrillation. Cardiovascular Research, 2012, 94, 48-57.	1.8	133
29	<i>KCNJ2</i> mutation in short QT syndrome 3 results in atrial fibrillation and ventricular proarrhythmia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4291-4296.	3.3	130
30	Dynamics of wavelets and their role in atrial fibrillation in the isolated sheep heart. Cardiovascular Research, 2000, 48, 220-232.	1.8	128
31	Mechanisms of Atrial Fibrillation Termination by Pure Sodium Channel Blockade in an Ionically-Realistic Mathematical Model. Circulation Research, 2005, 96, e35-47.	2.0	126
32	Simulation of high-resolution QRS complex using a ventricular model with a fractal conduction system. Effects of ischemia on high-frequency QRS potentials Circulation Research, 1991, 68, 1751-1760.	2.0	124
33	Noninvasive Localization of Maximal Frequency Sites of Atrial Fibrillation by Body Surface Potential Mapping. Circulation: Arrhythmia and Electrophysiology, 2013, 6, 294-301.	2.1	120
34	Body surface localization of left and right atrial high-frequency rotors in atrial fibrillation patients: A clinical-computational study. Heart Rhythm, 2014, 11, 1584-1591.	0.3	120
35	Dynamics of Intramural Scroll Waves in Three-dimensional Continuous Myocardium with Rotational Anisotropy. Journal of Theoretical Biology, 1999, 199, 383-394.	0.8	109
36	Wavebreak Formation During Ventricular Fibrillation in the Isolated, Regionally Ischemic Pig Heart. Circulation Research, 2003, 92, 546-553.	2.0	107

#	Article	IF	CITATIONS
37	Mechanisms of Fractionated Electrograms Formation in the Posterior Left Atrium During Paroxysmal Atrial Fibrillation in Humans. Journal of the American College of Cardiology, 2011, 57, 1081-1092.	1.2	105
38	From Mouse to Whale. Circulation, 2004, 110, 2802-2808.	1.6	100
39	Galectin-3 Regulates Atrial Fibrillation Remodeling and Predicts Catheter Ablation Outcomes. JACC Basic To Translational Science, 2016, 1, 143-154.	1.9	99
40	Synthesis of Voltage-Sensitive Fluorescence Signals from Three-Dimensional Myocardial Activation Patterns. Biophysical Journal, 2003, 85, 2673-2683.	0.2	92
41	Left versus right atrial difference in dominant frequency, K+ channel transcripts, and fibrosis in patients developing atrial fibrillation after cardiac surgery. Heart Rhythm, 2009, 6, 1415-1422.	0.3	91
42	Altered Right Atrial Excitation and Propagation in Connexin40 Knockout Mice. Circulation, 2005, 112, 2245-2253.	1.6	89
43	Minimal principle for rotor filaments. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8015-8018.	3.3	87
44	Atrial Septopulmonary Bundle of the Posterior Left Atrium Provides a Substrate for Atrial Fibrillation Initiation in a Model of Vagally Mediated Pulmonary Vein Tachycardia of the Structurally Normal Heart. Circulation: Arrhythmia and Electrophysiology, 2008, 1, 175-183.	2.1	87
45	Presence and stability of rotors in atrial fibrillation: evidence and therapeutic implications. Cardiovascular Research, 2016, 109, 480-492.	1.8	78
46	Mechanisms of stretch-induced atrial fibrillation in the presence and the absence of adrenocholinergic stimulation: Interplay between rotors and focal discharges. Heart Rhythm, 2009, 6, 1009-1017.	0.3	65
47	Long-Term Frequency Gradients During Persistent Atrial Fibrillation in Sheep Are Associated With Stable Sources in the Left Atrium. Circulation: Arrhythmia and Electrophysiology, 2012, 5, 1160-1167.	2.1	65
48	Fast, accurate, and fully automatic segmentation of the right ventricle in short-axis cardiac MRI. Computerized Medical Imaging and Graphics, 2014, 38, 190-201.	3.5	60
49	Technical Considerations on Phase Mapping for Identification of Atrial Reentrant Activity in Direct- and Inverse-Computed Electrograms. Circulation: Arrhythmia and Electrophysiology, 2017, 10, .	2.1	57
50	Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets. FASEB Journal, 2010, 24, 4302-4312.	0.2	55
51	Factors affecting basket catheter detection of real and phantom rotors in the atria: A computational study. PLoS Computational Biology, 2018, 14, e1006017.	1.5	52
52	Eplerenone Reduces Atrial Fibrillation Burden Without Preventing AtrialÂElectrical Remodeling. Journal of the American College of Cardiology, 2017, 70, 2893-2905.	1.2	48
53	Universal scaling law of electrical turbulence in the mammalian heart. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20985-20989.	3.3	47
54	Targeting atrioventricular differences in ion channel properties for terminating acute atrial fibrillation in pigs. Cardiovascular Research, 2011, 89, 843-851.	1.8	46

#	Article	IF	CITATIONS
55	A Major Role for hERG in Determining Frequency of Reentry in Neonatal Rat Ventricular Myocyte Monolayer. Circulation Research, 2010, 107, 1503-1511.	2.0	45
56	Letter by Jalife et al Regarding Article, "Quantitative Analysis of Localized Sources Identified by Focal Impulse and Rotor Modulation Mapping in Atrial Fibrillation― Circulation: Arrhythmia and Electrophysiology, 2015, 8, 1296-1298.	2.1	42
57	Time- and frequency-domain analyses of atrial fibrillation activation rate: The optical mapping reference. Heart Rhythm, 2011, 8, 1758-1765.	0.3	40
58	The ionic bases of the action potential in isolated mouse cardiac Purkinje cell. Heart Rhythm, 2013, 10, 80-87.	0.3	40
59	Noninvasive Estimation of Epicardial Dominant Highâ€Frequency Regions During Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 2016, 27, 435-442.	0.8	40
60	Effect of remodelling, stretch and ischaemia on ventricular fibrillation frequency and dynamics in a heart failure model. Cardiovascular Research, 2005, 65, 158-166.	1.8	39
61	Chloroquine Terminates Stretch-Induced Atrial Fibrillation More Effectively Than Flecainide in the Sheep Heart. Circulation: Arrhythmia and Electrophysiology, 2012, 5, 561-570.	2.1	38
62	24.3 An implantable 64nW ECG-monitoring mixed-signal SoC for arrhythmia diagnosis. , 2014, , .		38
63	Mechanistic Approaches to Detect, Target, and Ablate the Drivers of Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 2016, 9, e002481.	2.1	38
64	Molecular mechanisms and global dynamics of fibrillation: an integrative approach to the underlying basis of vortex-like reentry. Journal of Theoretical Biology, 2004, 230, 475-487.	0.8	37
65	Attraction of Rotors to the Pulmonary Veins in Paroxysmal Atrial Fibrillation: A Modeling Study. Biophysical Journal, 2014, 106, 1811-1821.	0.2	35
66	Quantifying activation frequency in atrial fibrillation to establish underlying mechanisms and ablation guidance. Heart Rhythm, 2007, 4, 1225-1234.	0.3	33
67	Cell-selective arrhythmia ablation for photomodulation of heart rhythm. Science Translational Medicine, 2015, 7, 311ra172.	5.8	32
68	Highest dominant frequency and rotor positions are robust markers of driver location during noninvasive mapping of atrial fibrillation: A computational study. Heart Rhythm, 2017, 14, 1224-1233.	0.3	30
69	Spatial gradients in action potential duration created by regional magnetofection of hERG are a substrate for wavebreak and turbulent propagation in cardiomyocyte monolayers. Journal of Physiology, 2012, 590, 6363-6379.	1.3	29
70	Ectopic and reentrant activation patterns in the posterior left atrium during stretch-related atrial fibrillation. Progress in Biophysics and Molecular Biology, 2012, 110, 269-277.	1.4	29
71	Effects of Fibrosis Morphology on Reentrant Ventricular Tachycardia Inducibility and Simulation Fidelity in Patient-Derived Models. Clinical Medicine Insights: Cardiology, 2014, 8s1, CMC.S15712.	0.6	29
72	Simulation of cardiac activity and the ECG using a heart model with a reaction-diffusion action potential. Medical Engineering and Physics, 1996, 18, 615-625.	0.8	28

#	Article	IF	CITATIONS
73	The quest for rotors in atrial fibrillation: Different nets catch different fishes. Heart Rhythm, 2012, 9, 1440-1441.	0.3	28
74	Complex fractionated atrial electrograms: Properties of time-domain versus frequency-domain methods. Heart Rhythm, 2009, 6, 1475-1482.	0.3	27
75	Shaping of a scroll wave filament by cardiac fibers. Physical Review E, 2001, 63, 061901.	0.8	26
76	Mechanisms Underlying the Antifibrillatory Action of Hyperkalemia in Guinea Pig Hearts. Biophysical Journal, 2010, 98, 2091-2101.	0.2	24
77	Endoscopic fluorescence mapping of the left atrium: A novel experimental approach for high resolution endocardial mapping in the intact heart. Heart Rhythm, 2007, 4, 916-924.	0.3	23
78	Identification of Dominant Excitation Patterns and Sources of Atrial Fibrillation by Causality Analysis. Annals of Biomedical Engineering, 2016, 44, 2364-2376.	1.3	23
79	Predicting filament drift in twisted anisotropy. Physical Review E, 2000, 61, 1845-1850.	0.8	21
80	Relative contribution of changes in sodium current versus intercellular coupling on reentry initiation in 2-dimensional preparations of plakophilin-2–deficient cardiac cells. Heart Rhythm, 2011, 8, 1740-1748.	0.3	20
81	High-rate pacing-induced atrial fibrillation effectively reveals properties of spontaneously occurring paroxysmal atrial fibrillation in humans. Europace, 2012, 14, 1560-1566.	0.7	20
82	Electrocardiographic Imaging for Atrial Fibrillation: A Perspective From Computer Models and Animal Experiments to Clinical Value. Frontiers in Physiology, 2021, 12, 653013.	1.3	20
83	Mechanisms of Atrial Fibrillation. Cardiology Clinics, 2014, 32, 495-506.	0.9	18
84	Bimodal classification algorithm for atrial fibrillation detection from m-health ECG recordings. Computers in Biology and Medicine, 2019, 104, 310-318.	3.9	18
85	Reentry in an accessory atrioventricular pathway as a trigger for atrial fibrillation initiation in manifest Wolff-Parkinson-White syndrome: A matter of reflection?. Heart Rhythm, 2008, 5, 1238-1247.	0.3	15
86	Complex Fractionated Atrial Electrograms. Circulation: Arrhythmia and Electrophysiology, 2011, 4, 426-428.	2.1	15
87	Automated segmentation and reconstruction of patient-specific cardiac anatomy and pathology from <i>in vivo</i> MRI*. Measurement Science and Technology, 2012, 23, 125405.	1.4	14
88	Mechanisms of Atrial Fibrillation. Heart Failure Clinics, 2016, 12, 167-178.	1.0	14
89	High-Resolution Endocardial and Epicardial Optical Mapping in a Sheep Model of Stretch-Induced Atrial Fibrillation. Journal of Visualized Experiments, 2011, , .	0.2	13
90	A 120nW 8b sub-ranging SAR ADC with signal-dependent charge recycling for biomedical applications. , 2015, 2015, C60-C61.		13

#	Article	IF	CITATIONS
91	Toward an understanding of the molecular mechanisms of ventricular fibrillation. Journal of Interventional Cardiac Electrophysiology, 2003, 9, 119-129.	0.6	12
92	The muscular network of the sheep right atrium and frequency-dependent breakdown of wave propagation. The Anatomical Record, 2004, 280A, 1053-1061.	2.3	12
93	Minimal configuration of body surface potential mapping for discrimination of left versus right dominant frequencies during atrial fibrillation. PACE - Pacing and Clinical Electrophysiology, 2017, 40, 940-946.	0.5	12
94	Far-field contributions in multi-electrodes atrial recordings blur distinction between anatomical and functional reentries and may cause imaginary phase singularities – A computational study. Computers in Biology and Medicine, 2019, 108, 276-287.	3.9	11
95	Reduced Ventricular Arrhythmogeneity and Increased Electrical Complexity in Normal Exercised Rats. PLoS ONE, 2013, 8, e66658.	1.1	10
96	Accurate reconstruction of 3D cardiac geometry from coarsely-sliced MRI. Computer Methods and Programs in Biomedicine, 2014, 113, 483-493.	2.6	10
97	Ventricular Tachycardia and Early Fibrillation in Patients With Brugada Syndrome and Ischemic Cardiomyopathy Show Predictable Frequency-Phase Properties on the Precordial ECG Consistent With the Respective Arrhythmogenic Substrate. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 1133-1143.	2.1	10
98	Mechanisms by Which Ranolazine Terminates Paroxysmal but Not Persistent Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 2019, 12, e005557.	2.1	10
99	Optical Mapping. Cardiac Electrophysiology Clinics, 2019, 11, 495-510.	0.7	10
100	Toward discerning the mechanisms of atrial fibrillation from surface electrocardiogram and spectral analysis. Journal of Electrocardiology, 2010, 43, 509-514.	0.4	9
101	Spectral analysis-based risk score enables early prediction of mortality and cerebral performance in patients undergoing therapeutic hypothermia for ventricular fibrillation and comatose status. International Journal of Cardiology, 2015, 186, 250-258.	0.8	9
102	The Major Role of IK1 in Mechanisms of Rotor Drift in the Atria: A Computational Study. Clinical Medicine Insights: Cardiology, 2016, 10s1, CMC.S39773.	0.6	9
103	Theory of Reentry. , 2004, , 317-326.		9
104	Ionic and substrate mechanism of atrial fibrillation: rotors and the exitación frequency approach. Archivos De Cardiologia De Mexico, 2010, 80, 301-14.	0.1	8
105	Modeling of the heart's ventricular conduction system using fractal geometry: Spectral analysis of the QRS complex. Annals of Biomedical Engineering, 1993, 21, 125-134.	1.3	7
106	Interdependence of virtual electrode polarization and conduction velocity during premature stimulation. Journal of Electrocardiology, 2006, 39, S13-S18.	0.4	6
107	Mechanistic Comparison of "NearlyÂMissed―Versus "On-Targetâ€ÂRotorÂAblation. JACC: Clinical Electrophysiology, 2015, 1, 256-269	1.3	6
108	Frontiers in Noninvasive Cardiac Mapping. Cardiac Electrophysiology Clinics, 2015, 7, 59-69.	0.7	6

#	Article	IF	CITATIONS
109	Surface and Intramural Reentrant Patterns during Atrial Fibrillation in the Sheep. Methods of Information in Medicine, 2014, 53, 314-319.	0.7	5
110	Shortâ€wave infrared light imaging measures tissue moisture and distinguishes superficial from deep burns. Wound Repair and Regeneration, 2020, 28, 185-193.	1.5	4
111	Basic Mechanisms of Cardiac Arrhythmias. , 0, , 152-190.		4
112	Letter by Berenfeld and Jalife Regarding Article "Dominant Frequency of Atrial Fibrillation Correlates Poorly With Atrial Fibrillation Cycle Length― Circulation: Arrhythmia and Electrophysiology, 2010, 3, e1; author reply e2-3.	2.1	3
113	Dominant Frequency and the Mechanisms of Initiation and Maintenance of Atrial Fibrillation. , 2014, , 419-432.		3
114	Atrial sources identification by causality analysis during atrial fibrillation. , 2015, 2015, 3783-6.		3
115	Causality analysis of leading singular value decomposition modes identifies rotor as the dominant driving normal mode in fibrillation. Chaos, 2018, 28, 013128.	1.0	3
116	To the Editor— Concerns in multi-electrode and phase mapping of AF. Heart Rhythm, 2018, 15, e3-e4.	0.3	3
117	EQUILIBRATION OF SCROLL WAVE FILAMENTS IN THE VENTRICULAR WALL AND THE MINIMAL PRINCIPLE. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2003, 13, 3723-3731.	0.7	2
118	Action Potential Alternans in LQT3 Syndrome: A Simulation Study. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 640-3.	0.5	2
119	Impulse Initiation and Propagation in Cardiac Muscle. , 0, , 92-120.		2
120	Rotors, Spirals, and Scroll Waves in the Heart. , 0, , 191-223.		2
121	Mechanisms of Atrial Fibrillation in Animals and Humans. , 2009, , 61-74.		1
122	Reentry in Cardioversion: â€~We can see it from here…'. Heart Rhythm, 2009, 6, 98-99.	0.3	1
123	Are multi-electrode arrays able to differentiate anatomical from functional reentries in an excitable sheet?. , 2015, , .		1
124	Inheritable Arrhythmogenic Diseases. , 0, , 276-315.		1
125	Ion Channel Regulation. , 0, , 72-91.		1
126	Dominant Frequency Mapping to Assess the Consequences of Remodeling in the Mechanism of Atrial Fibrillation. , 2008, , 77-100.		1

8

#	Article	IF	CITATIONS
127	Computational Approaches for Accurate Rotor Localization in the Human Atria. , 2018, , 335-344.		1
128	Overexpression of the inward rectifier K+ current (I K1) accelerates and stabilizes rotors. FASEB Journal, 2007, 21, A1157.	0.2	1
129	Panoramic Endocardial Optical Mapping Demonstrates Serial Rotors Acceleration and Increasing Complexity of Activity During Onset of Cholinergic Atrial Fibrillation. Journal of the American Heart Association, 2021, 10, e022300.	1.6	1
130	Frontiers in noninvasive cardiac mapping rotors in atrial fibrillation-body surface frequency-phase mapping. Cardiac Electrophysiology Clinics, 2015, 7, 59-69.	0.7	1
131	Spectral analysis of simulated QRS complex using a model of the heart's ventricles with a fractal conduction system. , 1992, , .		0
132	Pulmonary vein alternating Doppler flow profile in typical atrial flutter investigated by trans-esophageal echocardiograghy. Heart Rhythm, 2005, 2, S327-S328.	0.3	0
133	YI1-5. Heart Rhythm, 2006, 3, S107.	0.3	0
134	Turning on/off the dome in phase 2 reentry: The switching wave hypothesis. Heart Rhythm, 2009, 6, 823-824.	0.3	0
135	Spatiotemporal and spectral characteristics of atrial fibrillation waves across atrial walls and remodeling. Heart Rhythm, 2010, 7, 518-519.	0.3	0
136	A Spatial Gradient in IK1 Density Across the Pulmonary Vein-left Atrial Junction Attracts Atrial Fibrillation (AF) Drivers to the Pulmonary Veins. Heart Rhythm, 2010, 7, 1716-1717.	0.3	0
137	Frequency and Phase Domains Methods for Mechanisms of Fibrillation. , 2021, , 243-257.		0
138	Ionic Channels and Fibrillation. Basic Science for the Cardiologist, 2002, , 335-359.	0.1	0
139	Mechanisms of Maintenance of Atrial Fibrillation. , 2004, , 363-374.		0
140	Abstract 17810: Spectral Analysis-Based Risk Score to Early Predict Mortality and Cerebral Performance in Patients Undergoing Therapeutic Hypothermia for Ventricular Fibrillation and Comatose Status. Circulation, 2014, 130, .	1.6	0
141	Abstract 19063: Mechanistic Comparison of "Nearly-Missed―versus "On-Target―Rotor Ablation. Circulation, 2014, 130, .	1.6	0
142	Abstract 17684: A Novel System for the Rapid and Automated Detection of Atrial Fibrillation. Circulation, 2015, 132, .	1.6	0
143	Mapping Rotors in Animals and Humans During Atrial Fibrillation. , 0, , 423-433.		0

#	Article	IF	CITATIONS
145	Ion Channels. , 0, , 43-71.		0
146	Rate Dependency of Discontinuous Propagation. , 0, , 121-151.		0
147	Molecular Mechanisms of Ventricular Fibrillation. , 0, , 254-275.		0
148	Distinct spectral dynamics of implanted cardiac defibrillator signals in spontaneous termination of polymorphic ventricular tachycardia and fibrillation in patients with electrical and structural diseases. Europace, 0, , .	0.7	0