Dieter Suess

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/217069/publications.pdf Version: 2024-02-01

DIFTED SUFSS

#	Article	IF	CITATIONS
1	Computational micromagnetics based on normal modes: Bridging the gap between macrospin and full spatial discretization. Journal of Magnetism and Magnetic Materials, 2022, 546, 168683.	2.3	13
2	Magnetostatics and micromagnetics with physics informed neural networks. Journal of Magnetism and Magnetic Materials, 2022, 548, 168951.	2.3	21
3	Advances in Magnetics Roadmap on Spin-Wave Computing. IEEE Transactions on Magnetics, 2022, 58, 1-72.	2.1	179
4	Normal modes description of nonlinear ferromagnetic resonance for magnetic nanodots. AIP Advances, 2022, 12, 035244.	1.3	1
5	Efficient solution strategy to couple micromagnetic simulations with ballistic transport in magnetic tunnel junctions. Physical Review B, 2022, 105, .	3.2	2
6	Complex free-space magnetic field textures induced by three-dimensional magnetic nanostructures. Nature Nanotechnology, 2022, 17, 136-142.	31.5	39
7	Micromagnetic modeling of magnetic domain walls in curved cylindrical nanotubes and nanowires. Applied Physics Letters, 2021, 118, .	3.3	10
8	Extended micromagnetic model for the detection of superparamagnetic labels using a GMR vortex sensor. Journal of Physics Communications, 2021, 5, 075017.	1.2	2
9	Tension-free Dirac strings and steered magnetic charges in 3D artificial spin ice. Npj Computational Materials, 2021, 7, .	8.7	7
10	Micromagnetism. , 2021, , 347-390.		1
11	Stability of skyrmion formation and its abnormal dynamic modes in magnetic nanotubes. Physical Review B, 2020, 102, .	3.2	10
12	Hysteresis-free magnetization reversal of exchange-coupled bilayers with finite magnetic anisotropy. Physical Review B, 2020, 102, .	3.2	4
13	Control of the noncollinear interlayer exchange coupling. Science Advances, 2020, 6, .	10.3	17
14	The superior role of the Gilbert damping on the signal-to-noise ratio in heat-assisted magnetic recording. Journal of Magnetism and Magnetic Materials, 2020, 514, 167125.	2.3	3
15	Microscopic Origin of Magnetization Reversal in Nanoscale Exchange-Coupled Ferri/Ferromagnetic Bilayers: Implications for High Energy Density Permanent Magnets and Spintronic Devices. ACS Applied Nano Materials, 2020, 3, 9218-9225.	5.0	7
16	Dependence of energy barrier reduction on collective excitations in square artificial spin ice: A comprehensive comparison of simulation techniques. Physical Review B, 2020, 102, .	3.2	11
17	Thermally superactive artificial kagome spin ice structures obtained with the interfacial Dzyaloshinskii-Moriya interaction. Physical Review B, 2020, 102, .	3.2	15
18	Magnetic Position System Design Method Applied to Three-Axis Joystick Motion Tracking. Sensors, 2020, 20, 6873.	3.8	7

#	Article	IF	CITATIONS
19	Micromagnetic Simulations of Submicron Vortex Structures for the Detection of Superparamagnetic Labels. Sensors, 2020, 20, 5819.	3.8	1
20	Control of damping in perpendicularly magnetized thin films using spin-orbit torques. Physical Review B, 2020, 101, .	3.2	8
21	3D printing of polymer-bonded anisotropic magnets in an external magnetic field and by a modified production process. Applied Physics Letters, 2020, 116, .	3.3	28
22	Statistical analysis of read-back signals in magnetic recording on granular media. AIP Advances, 2020, 10, 015307.	1.3	3
23	Path sampling for lifetimes of metastable magnetic skyrmions and direct comparison with Kramers' method. Physical Review B, 2020, 101, .	3.2	25
24	Hybrid FFT algorithm for fast demagnetization field calculations on non-equidistant magnetic layers. Journal of Magnetism and Magnetic Materials, 2020, 503, 166592.	2.3	8
25	Learning time-stepping by nonlinear dimensionality reduction to predict magnetization dynamics. Communications in Nonlinear Science and Numerical Simulation, 2020, 84, 105205.	3.3	7
26	Additive Manufactured Polymer-Bonded Isotropic NdFeB Magnets by Stereolithography and Their Comparison to Fused Filament Fabricated and Selective Laser Sintered Magnets. Materials, 2020, 13, 1916.	2.9	22
27	Polymer-bonded anisotropic SrFe12O19 filaments for fused filament fabrication. Journal of Applied Physics, 2020, 127, .	2.5	27
28	Stochastic ferrimagnetic Landau-Lifshitz-Bloch equation for finite magnetic structures. Physical Review B, 2019, 100, .	3.2	10
29	Additive-Manufactured and Topology-Optimized Permanent-Magnet Spin Rotator for Neutron Interferometry. Physical Review Applied, 2019, 12, .	3.8	4
30	Learning magnetization dynamics. Journal of Magnetism and Magnetic Materials, 2019, 491, 165548.	2.3	14
31	Temperature Dependence of Noise in Giant- and Tunneling Magnetoresistive Vortex Sensors. IEEE Transactions on Magnetics, 2019, 55, 1-5.	2.1	4
32	Improving the signal-to-noise ratio for heat-assisted magnetic recording by optimizing a high/low Tc bilayer structure. Journal of Applied Physics, 2019, 126, 123907.	2.5	2
33	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si5.gif" overflow="scroll">< mml:mrow> <mml:mi mathvariant="normal">Y</mml:mi> <mml:mi mathvariant="normal">C<mml:msub><mml:mi mathvariant="normal">C<mml:mn>5</mml:mn></mml:mi </mml:msub> and</mml:mi 	2.3	9
34	related compounds. Journal of Magnetism and Magnetic Materials, 2019, 485, 61-68. Coercivity enhancement of selective laser sintered NdFeB magnets by grain boundary infiltration. Acta Materialia, 2019, 172, 66-71.	7.9	53
35	Erratum to "gpu accelerated atomistic energy barrier calculations of skyrmion annihilations―[nov 18 art. no. 7206105]. IEEE Transactions on Magnetics, 2019, 55, 1-1.	2.1	0
36	Spin Torque Efficiency and Analytic Error Rate Estimates of Skyrmion Racetrack Memory. Scientific Reports, 2019, 9, 4827.	3.3	26

#	Article	IF	CITATIONS
37	Magnetization Reversal of Strongly Exchange-Coupled Double Nanolayers for Spintronic Devices. ACS Applied Nano Materials, 2019, 2, 7478-7487.	5.0	13
38	Write head design for curvature reduction in heat-assisted magnetic recording by topology optimization. Journal of Applied Physics, 2019, 126, 143906.	2.5	2
39	Systematic parameterization of heat-assisted magnetic recording switching probabilities and the consequences for the resulting SNR. Journal of Applied Physics, 2019, 126, .	2.5	5
40	Design of spin-injection-layer in all-in-plane spin-torque-oscillator for microwave assisted magnetic recording. Journal of Magnetism and Magnetic Materials, 2019, 476, 361-370.	2.3	8
41	Curie temperature modulated structure to improve the performance in heat-assisted magnetic recording. Journal of Magnetism and Magnetic Materials, 2019, 474, 442-447.	2.3	4
42	An electrodynamic energy harvester with a 3D printed magnet and optimized topology. Applied Physics Letters, 2019, 114, 013902.	3.3	10
43	Large scale finite-element simulation of micromagnetic thermal noise. Journal of Magnetism and Magnetic Materials, 2019, 475, 408-414.	2.3	16
44	Solving the inverse magnetostatic problem using fictitious magnetic charges. AIP Advances, 2018, 8, 056005.	1.3	1
45	Convergence of highly parallel stray field calculation using the fast multipole method on irregular meshes. AIP Advances, 2018, 8, 056019.	1.3	0
46	Efficient micromagnetic modelling of spin-transfer torque and spin-orbit torque. AIP Advances, 2018, 8, .	1.3	7
47	A repulsive skyrmion chain as a guiding track for a racetrack memory. AIP Advances, 2018, 8, .	1.3	16
48	Comparison of Sensitivity and Low-Frequency Noise Contributions in Giant-Magnetoresistive and Tunneling-Magnetoresistive Spin-Valve Sensors with a Vortex-State Free Layer. Physical Review Applied, 2018, 10, .	3.8	19
49	GPU-Accelerated Atomistic Energy Barrier Calculations of Skyrmion Annihilations. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	7
50	Thermal stability of metastable magnetic skyrmions: Entropic narrowing and significance of internal eigenmodes. Physical Review B, 2018, 98, .	3.2	66
51	Additive Manufactured and Topology Optimized Passive Shimming Elements for Permanent Magnetic Systems. Scientific Reports, 2018, 8, 14651.	3.3	24
52	Back-Hopping in Spin-Transfer-Torque Devices: Possible Origin and Countermeasures. Physical Review Applied, 2018, 9, .	3.8	18
53	3D-printed phase waveplates for THz beam shaping. Applied Physics Letters, 2018, 112, .	3.3	29
54	Topologically protected vortex structures for low-noise magnetic sensors with high linear range. Nature Electronics, 2018, 1, 362-370.	26.0	60

#	Article	IF	CITATIONS
55	Solving Large-Scale Inverse Magnetostatic Problems using the Adjoint Method. Scientific Reports, 2017, 7, 40816.	3.3	24
56	Characterization of dynamic nonlinear effects in MTJ-based magnetic sensors. , 2017, , .		0
57	Nonlinear conjugate gradient methods in micromagnetics. AIP Advances, 2017, 7, .	1.3	42
58	The extrapolated explicit midpoint scheme for variable order and step size controlled integration of the Landau–Lifschitz–Gilbert equation. Journal of Computational Physics, 2017, 346, 14-24.	3.8	5
59	A fast finite-difference algorithm for topology optimization of permanent magnets. Journal of Applied Physics, 2017, 122, .	2.5	15
60	Influence of antisite defects and stacking faults on the magnetocrystalline anisotropy of FePt. Physical Review B, 2017, 96, .	3.2	10
61	3D Printing of Polymer-Bonded Rare-Earth Magnets With a Variable Magnetic Compound Fraction for a Predefined Stray Field. Scientific Reports, 2017, 7, 9419.	3.3	80
62	Significant reduction of critical currents in MRAM designs using dual free layer with perpendicular and in-plane anisotropy. Applied Physics Letters, 2017, 110, .	3.3	5
63	Soft Magnetic Properties of Thin Nanocrystalline Particles Due to the Interplay of Random and Coherent Anisotropies. IEEE Transactions on Magnetics, 2017, 53, 1-6.	2.1	3
64	Highly parallel demagnetization field calculation using the fast multipole method on tetrahedral meshes with continuous sources. Journal of Magnetism and Magnetic Materials, 2017, 442, 409-416.	2.3	8
65	Topology optimized and 3D printed polymer-bonded permanent magnets for a predefined external field. Journal of Applied Physics, 2017, 122, .	2.5	51
66	Effective uniaxial anisotropy in easy-plane materials through nanostructuring. Applied Physics Letters, 2017, 111, .	3.3	6
67	Fieldlike and Dampinglike Spin-Transfer Torque in Magnetic Multilayers. Physical Review Applied, 2017, 7, .	3.8	20
68	Roughness-induced domain structure in perpendicular Co/Ni multilayers. Journal of Magnetism and Magnetic Materials, 2017, 441, 283-289.	2.3	8
69	Origin of perpendicular magnetic anisotropy in Co/Ni multilayers. Physical Review B, 2017, 96, .	3.2	37
70	Noise Reduction Based on an Feâ^'Rh Interlayer in Exchange-Coupled Heat-Assisted Recording Media. Physical Review Applied, 2017, 8, .	3.8	9
71	Noise reduction in heat-assisted magnetic recording of bit-patterned media by optimizing a high/low Tc bilayer structure. Journal of Applied Physics, 2017, 122, .	2.5	6
72	Contactless and absolute linear displacement detection based upon 3D printed magnets combined with passive radio-frequency identification. AIP Advances, 2017, 7, .	1.3	7

#	Article	IF	CITATIONS
73	Efficiently reducing transition curvature in heat-assisted magnetic recording with state-of-the-art write heads. Applied Physics Letters, 2017, 110, 182406.	3.3	4
74	Areal density optimizations for heat-assisted magnetic recording of high-density media. Journal of Applied Physics, 2016, 119, .	2.5	20
75	Basic noise mechanisms of heat-assisted-magnetic recording. Journal of Applied Physics, 2016, 120, .	2.5	13
76	Passive wireless strain measurement based upon the Villari effect and giant magnetoresistance. Applied Physics Letters, 2016, 109, .	3.3	7
77	Heat-assisted magnetic recording of bit-patterned media beyond 10 Tb/in2. Applied Physics Letters, 2016, 108, .	3.3	53
78	3D print of polymer bonded rare-earth magnets, and 3D magnetic field scanning with an end-user 3D printer. Applied Physics Letters, 2016, 109, .	3.3	168
79	Reduction of critical current density for out-of-plane mode oscillation in a mag-flip spin torque oscillator using highly spin-polarized Co2Fe(Ga0.5Ge0.5) spin injection layer. Applied Physics Letters, 2016, 108, .	3.3	23
80	Influence of grain size and exchange interaction on the LLB modeling procedure. Journal of Applied Physics, 2016, 120, 223903.	2.5	5
81	Impact of lattice dynamics on the phase stability of metamagnetic FeRh: Bulk and thin films. Physical Review B, 2016, 94, .	3.2	44
82	Superior bit error rate and jitter due to improved switching field distribution in exchange spring magnetic recording media. Scientific Reports, 2016, 6, 27048.	3.3	2
83	A self-consistent spin-diffusion model for micromagnetics. Scientific Reports, 2016, 6, 16.	3.3	40
84	Unexpected Width of Minor Magnetic Hysteresis Loops in Nanostructures. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	3
85	Macroscopic simulation of isotropic permanent magnets. Journal of Magnetism and Magnetic Materials, 2016, 401, 875-879.	2.3	6
86	Coupling of dynamical micromagnetism and a stationary spin drift-diffusion equation: A step towards a fully self-consistent spintronics framework. Physica B: Condensed Matter, 2016, 486, 88-91.	2.7	9
87	A three-dimensional spin-diffusion model for micromagnetics. Scientific Reports, 2015, 5, 14855.	3.3	51
88	The influence of spin-diffusion effects on current driven domain-wall motion. , 2015, , .		0
89	A device model framework for magnetoresistive sensors based on the Stoner–Wohlfarth model. Journal of Magnetism and Magnetic Materials, 2015, 381, 344-349.	2.3	6
90	A full-fledged micromagnetic code in fewer than 70 lines of NumPy. Journal of Magnetism and Magnetic Materials, 2015, 387, 13-18.	2.3	10

#	Article	IF	CITATIONS
91	Calculating thermal stability and attempt frequency of advanced recording structures without free parameters. Journal of Applied Physics, 2015, 117, 163907.	2.5	12
92	Reactivable passive radio-frequency identification temperature indicator. Journal of Applied Physics, 2015, 117, .	2.5	4
93	Fundamental limits in heat-assisted magnetic recording and methods to overcome it with exchange spring structures. Journal of Applied Physics, 2015, 117, 163913.	2.5	28
94	Multiscale modeling in micromagnetics: Existence of solutions and numerical integration. Mathematical Models and Methods in Applied Sciences, 2014, 24, 2627-2662.	3.3	30
95	Landau-Lifshitz-Bloch equation for exchange-coupled grains. Physical Review B, 2014, 90, .	3.2	35
96	Fully coupled, dynamic model of a magnetostrictive amorphous ribbon and its validation. Journal of Applied Physics, 2014, 115, .	2.5	4
97	Scaling dependence and tailoring of the pinning field in FePt-based exchange coupled composite media. Nanotechnology, 2014, 25, 045604.	2.6	9
98	Efficient energy minimization in finite-difference micromagnetics: Speeding up hysteresis computations. Journal of Applied Physics, 2014, 116, 123908.	2.5	7
99	FFT-based Kronecker product approximation to micromagnetic long-range interactions. Mathematical Models and Methods in Applied Sciences, 2014, 24, 1877-1901.	3.3	7
100	Hierarchy of Stochastic Pure States for Open Quantum System Dynamics. Physical Review Letters, 2014, 113, 150403.	7.8	145
101	Spin-polarized transport in ferromagnetic multilayers: An unconditionally convergent FEM integrator. Computers and Mathematics With Applications, 2014, 68, 639-654.	2.7	26
102	Influence of thermal energy on exchange-bias studied by finite-element simulations. Applied Physics Letters, 2013, 103, .	3.3	1
103	magnum.fe: A micromagnetic finite-element simulation code based on FEniCS. Journal of Magnetism and Magnetic Materials, 2013, 345, 29-35.	2.3	61
104	Simulating rare switching events of magnetic nanostructures with forward flux sampling. Physical Review B, 2013, 88, .	3.2	24
105	Probing the energy barriers and magnetization reversal processes of nanoperforated membrane based percolated media. Nanotechnology, 2013, 24, 145702.	2.6	15
106	Combining micromagnetism and magnetostatic Maxwell equations for multiscale magnetic simulations. Journal of Magnetism and Magnetic Materials, 2013, 343, 163-168.	2.3	15
107	Dependence of coercivity on length ratios in sub-micron Nd2Fe14B particles with rectangular prism shape. Journal of Applied Physics, 2013, 114, .	2.5	24
108	Breaking the thermally induced write error in heat assisted recording by using low and high Tc materials. Applied Physics Letters, 2013, 102, .	3.3	32

#	Article	IF	CITATIONS
109	Fabrication and high-resolution electron microscopy study of FePt L1 ₀ /A1 graded exchange spring media. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1305-1310.	1.8	8
110	Mechanical Oscillations of Magnetic Strips under the Inï¬,uence of External Field. EPJ Web of Conferences, 2013, 40, 13004.	0.3	0
111	Micromagnetic study of exchange spring media with a rough interface on an example of FePt films. Journal Physics D: Applied Physics, 2012, 45, 495001.	2.8	4
112	Thermal switching field distribution of a single domain particle for field-dependent attempt frequency. Journal of Applied Physics, 2012, 112, 023903.	2.5	22
113	An Eddy-Current Model Describing the Frequency Dependence of the Coercivity of Polycrystalline Galfenol. IEEE Transactions on Magnetics, 2012, 48, 3076-3079.	2.1	22
114	Direct calculation of the attempt frequency of magnetic structures using the finite element method. Journal of Applied Physics, 2012, 111, 093917.	2.5	33
115	Removal of earth's magnetic field effect on magnetoelastic resonance sensors by an antisymmetric bias field. Sensors and Actuators A: Physical, 2012, 183, 11-15.	4.1	4
116	Magnetoelastic resonance sensor for remote strain measurements. Applied Physics Letters, 2012, 101, 042402.	3.3	24
117	Wireless and passive temperature indicator utilizing the large hysteresis of magnetic shape memory alloys. Applied Physics Letters, 2012, 101, 042412.	3.3	3
118	Head and bit patterned media optimization at areal densities of 2.5Tbit/in2 and beyond. Journal of Magnetism and Magnetic Materials, 2012, 324, 269-275.	2.3	7
119	3D FEM–BEM-coupling method to solve magnetostatic Maxwell equations. Journal of Magnetism and Magnetic Materials, 2012, 324, 1862-1866.	2.3	30
120	Calculation of coercivity of magnetic nanostructures at finite temperatures. Physical Review B, 2011, 84, .	3.2	22
121	Fluxgate Principle Applied to a Magnetic Tunnel Junction for Weak Magnetic Field Sensing. IEEE Transactions on Magnetics, 2011, 47, 1549-1553.	2.1	6
122	FePt L10/A1 graded media with a rough interphase boundary. Applied Physics Letters, 2011, 98, 222501.	3.3	16
123	Contribution of the easy axis orientation, anisotropy distribution and dot size on the switching field distribution of bit patterned media. Applied Physics Letters, 2011, 99, .	3.3	26
124	Three-dimensional magneto-resistive random access memory devices based on resonant spin-polarized alternating currents. Journal of Applied Physics, 2011, 109, 123901.	2.5	3
125	Direct probing magnetization reversal of exchange-coupled-composite media by x-ray magnetic circular dichroism. Applied Physics Letters, 2011, 98, 262507.	3.3	5
126	Validation of the transition state theory with Langevin-dynamics simulations. Journal of Applied Physics, 2010, 108, 033915.	2.5	14

#	Article	IF	CITATIONS
127	Graded Media Design for Area Density of Up to 2.5 Tb/in\$^{2}\$. IEEE Transactions on Magnetics, 2010, 46, 1866-1868.	2.1	5
128	Magnetization reversal processes of single nanomagnets and their energy barrier. Journal of Magnetism and Magnetic Materials, 2010, 322, 3771-3776.	2.3	18
129	Modeling of the write and read back performances of hexagonal Ba-ferrite particulate media for high density tape recording. Journal of Magnetism and Magnetic Materials, 2010, 322, 3869-3875.	2.3	8
130	Perpendicular FePt-based exchange-coupled composite media. Applied Physics Letters, 2010, 96, .	3.3	63
131	Theory and micromagnetics of pinning mechanism at cylindrical defects in perpendicular magnetic films. Journal of Applied Physics, 2010, 107, 113926.	2.5	8
132	Magnetic films on nanoperforated templates: a route towards percolated perpendicular media. Nanotechnology, 2010, 21, 495701.	2.6	35
133	Co/Pt perpendicular antidot arrays with engineered feature size and magnetic properties fabricated on anodic aluminum oxide templates. Physical Review B, 2010, 81, .	3.2	64
134	Microwave-assisted three-dimensional multilayer magnetic recording. Applied Physics Letters, 2009, 94, .	3.3	53
135	Effect of magnetic softness in a soft layer on media properties of hard/soft stacked composite perpendicular media. Journal of Applied Physics, 2009, 105, 07B740.	2.5	2
136	Grain geometry induced reversal behaviour alteration. Journal Physics D: Applied Physics, 2009, 42, 045005.	2.8	0
137	Increases in effective head field gradients in exchange spring media. Applied Physics Letters, 2009, 95, 172509.	3.3	4
138	Contribution of Convex Surfaces to Magnetostatic Interaction in Granular Medium. IEEE Transactions on Magnetics, 2009, 45, 2655-2658.	2.1	0
139	Exchange Coupled Bit Patterned Media Under the Influence of RF-Field Pulses. IEEE Transactions on Magnetics, 2009, 45, 3851-3854.	2.1	9
140	Exchange-coupled perpendicular media. Journal of Magnetism and Magnetic Materials, 2009, 321, 545-554.	2.3	111
141	Internal effective field sources for spin torque nanopillar oscillators. Journal of Applied Physics, 2009, 105, .	2.5	3
142	Micromagnetics of single and double point contact spin torque oscillators. Journal of Applied Physics, 2009, 105, 083923.	2.5	12
143	Effect of Intergranular Exchange on the Thermal Stability and Coercive Field of Perpendicular, Single Phase, Exchange Spring, and Coupled Granular Continuous (CGC) Perpendicular Recording Media. IEEE Transactions on Magnetics, 2009, 45, 8 <u>8</u> -99.	2.1	14
144	Mutual phase locking in high-frequency microwave nano-oscillators as a function of field angle. Journal of Magnetism and Magnetic Materials, 2008, 320, L111-L115.	2.3	9

#	Article	IF	CITATIONS
145	Contribution of the shrunk interface and the convex surface of grains on magnetic behavior in granular film. Journal of Applied Physics, 2008, 103, 07F519.	2.5	5
146	Thermally induced adjacent track erasure in exchange spring media. Applied Physics Letters, 2008, 92, .	3.3	13
147	Thermal stability of graded exchange spring media under the influence of external fields. Applied Physics Letters, 2008, 92, 173111.	3.3	39
148	Microwave-Assisted Magnetization Reversal in Exchange Spring Media. IEEE Transactions on Magnetics, 2008, 44, 3519-3522.	2.1	24
149	Thermal stability of bubble domains in ferromagnetic discs. Journal Physics D: Applied Physics, 2007, 40, 2695-2698.	2.8	6
150	Magnetic multilayers on porous anodized alumina for percolated perpendicular media. Applied Physics Letters, 2007, 91, 132505.	3.3	50
151	Reliability of Sharrocks equation for exchange spring bilayers. Physical Review B, 2007, 75, .	3.2	56
152	Recording simulations on graded media for area densities of up to 1Tbitâ^in.2. Applied Physics Letters, 2007, 91, 222502.	3.3	38
153	Micromagnetics of exchange spring media: Optimization and limits. Journal of Magnetism and Magnetic Materials, 2007, 308, 183-197.	2.3	103
154	Micromagnetic study of recording on ion-irradiated granular-patterned media. Journal of Magnetism and Magnetic Materials, 2007, 319, 5-8.	2.3	6
155	CoCrPtO-Based Granular Composite Perpendicular Recording Media. IEEE Transactions on Magnetics, 2007, 43, 2088-2090.	2.1	17
156	Magnetic characteristics of ferromagnetic nanotube. Journal of Magnetism and Magnetic Materials, 2007, 310, 2445-2447.	2.3	56
157	Nanostructure calculation of CoAg core-shell clusters. Journal of Applied Physics, 2006, 99, 08G706.	2.5	37
158	Multilayer exchange spring media for magnetic recording. Applied Physics Letters, 2006, 89, 113105.	3.3	205
159	Magnetization Reversal in a Novel Gradient Nanomaterial. Physical Review Letters, 2006, 96, 077202.	7.8	98
160	Multiscale micromagnetic simulation of giant magnetoresistance read heads. Journal of Applied Physics, 2006, 99, 08S303.	2.5	15
161	Relaxation times and cell size in nonzero-temperature micromagnetics. Physica B: Condensed Matter, 2006, 372, 277-281.	2.7	6
162	Full micromagnetics of recording on patterned media. Physica B: Condensed Matter, 2006, 372, 312-315.	2.7	7

#	Article	IF	CITATIONS
163	Transitions Between Vortex and Transverse Walls in NiFe Nano-Structures. IEEE Transactions on Magnetics, 2006, 42, 2966-2968.	2.1	6
164	Lateral Exchange Spring Media. IEEE Transactions on Magnetics, 2006, 42, 2357-2359.	2.1	3
165	Contribution of Local Incoherency on Gilbert-Damping. IEEE Transactions on Magnetics, 2006, 42, 3210-3212.	2.1	3
166	Micromagnetic study of pinning behavior in percolated media. Journal of Applied Physics, 2006, 99, 08G905.	2.5	41
167	Influence of eddy currents on the effective damping parameter. Journal of Applied Physics, 2006, 99, 08B902.	2.5	5
168	Micromagnetic simulation of asymmetric magnetization reversal in exchange biased bilayers. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 754-757.	2.3	6
169	Analysis of fast switching in tilted media. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 506-509.	2.3	4
170	Influence of the Gilbert damping constant on the flux rise time of write head fields. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 518-521.	2.3	8
171	Exchange spring recording media for areal densities up to 10Tbit/in2. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 551-554.	2.3	101
172	Pulsed inductive microwave magnetometer response calculated for IrMn/FeNi bilayers. European Physical Journal B, 2005, 45, 267-271.	1.5	0
173	Thermally induced vortex nucleation in permalloy elements. IEEE Transactions on Magnetics, 2005, 41, 3592-3594.	2.1	15
174	Partitioning of the perpendicular write field into head and SUL contributions. IEEE Transactions on Magnetics, 2005, 41, 3064-3066.	2.1	37
175	Dynamic micromagnetic studies of anisotropy effects in perpendicular write heads. IEEE Transactions on Magnetics, 2005, 41, 3073-3075.	2.1	12
176	Influence of eddy current on magnetization processes in submicrometer permalloy structures. IEEE Transactions on Magnetics, 2005, 41, 3097-3099.	2.1	14
177	Optimization of exchange spring perpendicular recording media. IEEE Transactions on Magnetics, 2005, 41, 3166-3168.	2.1	31
178	Angular dependence of the switching field in patterned magnetic elements. Journal of Applied Physics, 2005, 97, 10J705.	2.5	31
179	Cell size corrections for nonzero-temperature micromagnetics. Journal of Applied Physics, 2005, 97, 10E301.	2.5	32
180	Numerical micromagnetics of an assembly of (Fe,Co)Pt nanoparticles. Journal of Applied Physics, 2005, 97, 10E508.	2.5	9

#	Article	IF	CITATIONS
181	Three-dimensional micromagnetic finite element simulations including eddy currents. Journal of Applied Physics, 2005, 97, 10E311.	2.5	28
182	Exchange spring media for perpendicular recording. Applied Physics Letters, 2005, 87, 012504.	3.3	323
183	Micromagnetic simulation of magnetization reversal in small particles with surface anisotropy. Journal of Applied Physics, 2004, 95, 6807-6809.	2.5	27
184	Micromagnetic modelling and magnetization processes. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 641-646.	2.3	21
185	Implementation of a high performance parallel finite element micromagnetics package. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 693-694.	2.3	2
186	Numerical micromagnetic simulation of Fe–Pt nanoparticles with multiple easy axes. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1524-1525.	2.3	12
187	Magnetostatic spin waves in nanoelements. Physica B: Condensed Matter, 2004, 343, 200-205.	2.7	17
188	Nonuniform Thermal Reversal in Single-Domain Patterned Media. IEEE Transactions on Magnetics, 2004, 40, 2507-2509.	2.1	7
189	Dynamic Micromagnetic Write Head Fields During Magnetic Recording in Granular Media. IEEE Transactions on Magnetics, 2004, 40, 2341-2343.	2.1	25
190	Transition from single-domain to vortex state in soft magnetic cylindrical nanodots. Journal of Magnetism and Magnetic Materials, 2003, 266, 155-163.	2.3	117
191	Thermal fluctuations in magnetic sensor elements. Sensors and Actuators A: Physical, 2003, 106, 134-136.	4.1	3
192	Micromagnetic calculations of bias field and coercivity of compensated ferromagnetic antiferromagnetic bilayers. Journal of Applied Physics, 2003, 93, 8618-8620.	2.5	9
193	Micromagnetic calculation of bias field and coercivity of polycrystalline ferromagnetic/antiferromagnetic layers. IEEE Transactions on Magnetics, 2003, 39, 2735-2737.	2.1	10
194	Exchange bias of polycrystalline antiferromagnets with perfectly compensated interfaces. Physical Review B, 2003, 67, .	3.2	85
195	Scalable parallel micromagnetic solvers for magnetic nanostructures. Computational Materials Science, 2003, 28, 366-383.	3.0	256
196	Reversible magnetization processes and energy density product in Sm–CoFe and Sm–Co/Co bilayers. Journal of Applied Physics, 2003, 93, 6489-6491.	2.5	22
197	Coercivity and remanence in self-assembled FePt nanoparticle arrays. Journal of Applied Physics, 2003, 93, 7041-7043.	2.5	32
198	Micromagnetic simulation of the pinning and depinning process in permanent magnets. IEEE Transactions on Magnetics, 2003, 39, 2920-2922.	2.1	15

#	Article	IF	CITATIONS
199	Thermally induced magnetization reversal in antiferromagnetically coupled media. Journal of Applied Physics, 2003, 93, 7405-7407.	2.5	4
200	Thermally activated magnetization rotation in small nanoparticles. IEEE Transactions on Magnetics, 2003, 39, 2507-2509.	2.1	7
201	Energy barriers in magnetic random access memory elements. IEEE Transactions on Magnetics, 2003, 39, 2839-2841.	2.1	12
202	Magnetic interactions and reversal behavior ofNd2Fe14Bparticles diluted in a Nd matrix. Physical Review B, 2002, 66, .	3.2	31
203	Ultrafast switching of magnetic nanoelements using a rotating field. Journal of Applied Physics, 2002, 91, 7974.	2.5	11
204	Exchange Bias and Training Effect in Polycrystalline Antiferromagnetic/Ferromagnetic Bilayers. Materials Research Society Symposia Proceedings, 2002, 746, 761.	0.1	0
205	Micromagnetic Simulation of Thermal Effects in Magnetic Nanostructures. Materials Research Society Symposia Proceedings, 2002, 746, 1.	0.1	3
206	Micromagnetic three-dimensional simulation of the pinning field in high temperature Sm(Co,Fe,Cu,Zr)[sub z] magnets. Journal of Applied Physics, 2002, 91, 8492.	2.5	16
207	FE-simulation of fast switching behavior of granular nanoelements. IEEE Transactions on Magnetics, 2002, 38, 2520-2522.	2.1	5
208	Finite element simulation of discrete media with granular structure. IEEE Transactions on Magnetics, 2002, 38, 1967-1969.	2.1	8
209	Domain wall motion in nanowires using moving grids (invited). Journal of Applied Physics, 2002, 91, 6914.	2.5	72
210	Micromagnetic simulation of antiferromagnetic/ferromagnetic structures. IEEE Transactions on Magnetics, 2002, 38, 2397-2399.	2.1	28
211	Magnetization reversal in granular nanowires. IEEE Transactions on Magnetics, 2002, 38, 2580-2582.	2.1	22
212	Nucleation in polycrystalline thin films using a preconditioned finite element method. Journal of Applied Physics, 2002, 91, 7977.	2.5	5
213	Domain structures and domain wall pinning in arrays of elliptical NiFe nanoelements. Journal of Applied Physics, 2002, 91, 7047.	2.5	9
214	Micromagnetic simulation of the magnetic switching behaviour of mesoscopic and nanoscopic structures. Computational Materials Science, 2002, 24, 163-174.	3.0	10
215	Micromagnetic simulation of domain wall pinning and domain wall motion. Computational Materials Science, 2002, 25, 540-546.	3.0	16
216	Fast switching behaviour of nanoscopic NiFe- and Co-elements. Computational Materials Science, 2002, 25, 554-561.	3.0	3

#	Article	IF	CITATIONS
217	Micromagnetic simulation of domain wall pinning in Sm(Co,Fe,Cu,Zr)z magnets. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 1356-1358.	2.3	4
218	The effect of the cell size in Langevin micromagnetic simulations. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 999-1001.	2.3	27
219	Fast switching of small magnetic particles. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 426-429.	2.3	17
220	Time resolved micromagnetics using a preconditioned time integration method. Journal of Magnetism and Magnetic Materials, 2002, 248, 298-311.	2.3	113
221	A path method for finding energy barriers and minimum energy paths in complex micromagnetic systems. Journal of Magnetism and Magnetic Materials, 2002, 250, 12-19.	2.3	132
222	Micromagnetic simulation of domain wall motion in magnetic nano-wires. Journal of Magnetism and Magnetic Materials, 2002, 249, 181-186.	2.3	83
223	Micromagnetic simulations of magnetization reversal in Co/Ni multilayers. Physica B: Condensed Matter, 2001, 306, 38-43.	2.7	5
224	Micromagnetic simulation of magnetization reversal in rotational magnetic fields. Physica B: Condensed Matter, 2001, 306, 112-116.	2.7	6
225	Reversal modes, thermal stability and exchange length in perpendicular recording media. IEEE Transactions on Magnetics, 2001, 37, 1664-1666.	2.1	23
226	Reversal dynamics of interacting circular nanomagnets. IEEE Transactions on Magnetics, 2001, 37, 1960-1962.	2.1	10
227	Stiffness analysis for the micromagnetic standard problem No. 4. Journal of Applied Physics, 2001, 89, 7600-7602.	2.5	12
228	Micromagnetic analysis of remanence and coercivity of nanocrystalline Pr–Fe–B magnets. Journal of Applied Physics, 2000, 87, 6573-6575.	2.5	15