Frank Feyerabend

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2170512/publications.pdf

Version: 2024-02-01

97 7,330 38 83
papers citations h-index g-index

102 102 102 4658 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Effects of proteins on magnesium degradation - static vs. dynamic conditions. Journal of Magnesium and Alloys, 2023, 11, 1332-1342.	5. 5	7
2	Effects of dynamic flow rates on degradation deposition behavior of Mg scaffold. Journal of Magnesium and Alloys, 2023, 11, 2054-2060.	5.5	1
3	Pore characterization of PM Mg–0.6Ca alloy and its degradation behavior under physiological conditions. Journal of Magnesium and Alloys, 2021, 9, 686-703.	5. 5	12
4	Influence of the amount of intermetallics on the degradation of Mg-Nd alloys under physiological conditions. Acta Biomaterialia, 2021, 121, 695-712.	4.1	39
5	Mg Biodegradation Mechanism Deduced from the Local Surface Environment under Simulated Physiological Conditions. Advanced Healthcare Materials, 2021, 10, e2100053.	3.9	17
6	Sacrificial protection of Mg-based resorbable implant alloy by magnetron sputtered Mg5Gd alloy coating: A short-term study. Corrosion Science, 2021, 189, 109590.	3.0	9
7	Deteriorated corrosion performance of micro-alloyed Mg-Zn alloy after heat treatment and mechanical processing. Journal of Materials Science and Technology, 2021, 92, 214-224.	5.6	11
8	Microstructure-corrosion behaviour relationship of micro-alloyed Mg-0.5Zn alloy with the addition of Ca, Sr, Ag, In and Cu. Materials and Design, 2020, 195, 108980.	3.3	34
9	Effects of Intermetallic Microstructure on Degradation of Mg-5Nd Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 5498-5515.	1.1	10
10	Investigation of the impact of magnesium <i>versus</i> titanium implants on protein composition in osteoblast by label free quantification. Metallomics, 2020, 12, 916-934.	1.0	13
11	Proteins and medium-flow conditions: how they influence the degradation of magnesium. Surface Innovations, 2020, 8, 224-233.	1.4	8
12	Time-sequential corrosion behaviour observation of micro-alloyed Mg-0.5Zn-0.2Ca alloy via a quasi-in situ approach. Corrosion Science, 2019, 158, 108096.	3.0	38
13	In vitro evaluation of the ZX11 magnesium alloy as potential bone plate: Degradability and mechanical integrity. Acta Biomaterialia, 2019, 97, 608-622.	4.1	86
14	In Vivo Simulation of Magnesium Degradability Using a New Fluid Dynamic Bench Testing Approach. International Journal of Molecular Sciences, 2019, 20, 4859.	1.8	21
15	Improved In Vitro Test Procedure for Full Assessment of the Cytocompatibility of Degradable Magnesium Based on ISO 10993-5/-12. International Journal of Molecular Sciences, 2019, 20, 255.	1.8	63
16	Mechanical properties and degradation behavior of binary magnesium-silver alloy sheets. Journal of Physics and Chemistry of Solids, 2019, 133, 142-150.	1.9	12
17	Proteome analysis of human mesenchymal stem cells undergoing chondrogenesis when exposed to the products of various magnesium-based materials degradation. Bioactive Materials, 2019, 4, 168-188.	8.6	10
18	Different effects of single protein vs. protein mixtures on magnesium degradation under cell culture conditions. Acta Biomaterialia, 2019, 98, 256-268.	4.1	51

#	Article	IF	Citations
19	Large expert-curated database for benchmarking document similarity detection in biomedical literature search. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	1.4	15
20	The role of individual components of simulated body fluid on the corrosion behavior of commercially pure Mg. Corrosion Science, 2019, 147, 81-93.	3.0	97
21	Quantitative characterization of degradation processes in situ by means of a bioreactor coupled flow chamber under physiological conditions using time″apse SRÂμCT. Materials and Corrosion - Werkstoffe Und Korrosion, 2018, 69, 298-306.	0.8	28
22	Magnesium degradation under physiological conditions $\hat{a}\in$ Best practice. Bioactive Materials, 2018, 3, 174-185.	8.6	177
23	Microstructure and Mechanical Properties of Mg-Gd Alloys as Biodegradable Implant Materials. Minerals, Metals and Materials Series, 2018, , 253-262.	0.3	3
24	Exploring the effects of organic molecules on the degradation of magnesium under cell culture conditions. Corrosion Science, 2018, 132, 35-45.	3.0	42
25	A simple model for longâ€time degradation of magnesium under physiological conditions. Materials and Corrosion - Werkstoffe Und Korrosion, 2018, 69, 191-196.	0.8	12
26	Adsorption of Proteins on Degradable Magnesium—Which Factors are Relevant?. ACS Applied Materials & Discrete Relevant & Discrete Re	4.0	33
27	In vitro degradation behavior of Mg scaffolds with three-dimensional interconnected porous structures for bone tissue engineering. Corrosion Science, 2018, 144, 301-312.	3.0	36
28	Local pH and Its Evolution Near Mg Alloy Surfaces Exposed to Simulated Body Fluids. Advanced Materials Interfaces, 2018, 5, 1800169.	1.9	63
29	The effect of osteoblasts on the surface oxidation processes of biodegradable Mg and Mg-Ag alloys studied by synchrotron IR microspectroscopy. Materials Science and Engineering C, 2018, 91, 659-668.	3.8	19
30	Behavior of bone cells in contact with magnesium implant material. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 165-179.	1.6	33
31	Bioactive plasma electrolytic oxidation coatings on Mg-Ca alloy to control degradation behaviour. Surface and Coatings Technology, 2017, 315, 454-467.	2.2	87
32	Influence of Dy in solid solution on the degradation behavior of binary Mg-Dy alloys in cell culture medium. Materials Science and Engineering C, 2017, 75, 1351-1358.	3.8	28
33	A study of degradation resistance and cytocompatibility of super-hydrophobic coating on magnesium. Materials Science and Engineering C, 2017, 78, 405-412.	3.8	62
34	Chondrogenic differentiation of ATDC5-cells under the influence of Mg and Mg alloy degradation. Materials Science and Engineering C, 2017, 72, 378-388.	3.8	14
35	Increased levels of sodium chloride directly increase osteoclastic differentiation and resorption in mice and men. Osteoporosis International, 2017, 28, 3215-3228.	1.3	18
36	Influence of the Microstructure and Silver Content on Degradation, Cytocompatibility, and Antibacterial Properties of Magnesium-Silver Alloys In Vitro. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-14.	1.9	42

#	Article	IF	CITATIONS
37	In vivo and in vitro degradation comparison of pure Mg, Mg-10Gd and Mg-2Ag: a short term study. , 2017, 33, 90-104.		56
38	On the Determination of Magnesium Degradation Rates under Physiological Conditions. Materials, 2016, 9, 627.	1.3	44
39	Metal Injection Molding (MIM) of Magnesium and Its Alloys. Metals, 2016, 6, 118.	1.0	29
40	Proteomic profile of mouse fibroblasts exposed to pure magnesium extract. Materials Science and Engineering C, 2016, 69, 522-531.	3.8	9
41	In Vitro Corrosion and Cytocompatibility Properties of Mg-2Gd-X(Ag, Ca) Alloys., 2016,, 347-351.		1
42	Intramedullary Mg2Ag nails augment callus formation during fracture healing in mice. Acta Biomaterialia, 2016, 36, 350-360.	4.1	75
43	Degradation rates and products of pure magnesium exposed to different aqueous media under physiological conditions. BioNanoMaterials, 2016, 17 , .	1.4	26
44	Magnesium degradation observed in situ under flow by synchrotron radiation based microtomography. , $2016, \ldots$		2
45	Degradation testing of Mg alloys in Dulbecco's modified eagle medium: Influence of medium sterilization. Materials Science and Engineering C, 2016, 62, 68-78.	3.8	57
46	Magnesium degradation influenced by buffering salts in concentrations typical of in vitro and in vivo models. Materials Science and Engineering C, 2016, 58, 817-825.	3.8	61
47	The Degradation Interface of Magnesium Based Alloys in Direct Contact with Human Primary Osteoblast Cells. PLoS ONE, 2016, 11, e0157874.	1.1	41
48	Influence of Magnesium Alloy Degradation on Undifferentiated Human Cells. PLoS ONE, 2015, 10, e0142117.	1.1	31
49	Influence of various sterilization methods on hardness, grain size and corrosion rate of a Mg6Ag-alloy. BioNanoMaterials, 2015, 16 , .	1.4	6
50	Mechanical properties and corrosion behavior of Mg–Gd–Ca–Zr alloys for medical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 47, 38-48.	1.5	46
51	Blood compatibility of magnesium and its alloys. Acta Biomaterialia, 2015, 25, 384-394.	4.1	38
52	Effects of extracellular magnesium extract on the proliferation and differentiation of human osteoblasts and osteoclasts in coculture. Acta Biomaterialia, 2015, 27, 294-304.	4.1	158
53	Mg and Mg alloys: How comparable are in vitro and in vivo corrosion rates? A review. Acta Biomaterialia, 2015, 13, 16-31.	4.1	378
54	Influence of Testing Environment on the Degradation Behavior of Magnesium Alloys for Bioabsorbable Implants., 2015,, 499-506.		1

#	Article	IF	CITATIONS
55	Powder Metallurgical Synthesis of Biodegradable Mg-Hydroxyapatite Composites for Biomedical Applications., 2015,, 425-429.		0
56	Optimization of Cell Adhesion on Mg Based Implant Materials by Pre-Incubation under Cell Culture Conditions. International Journal of Molecular Sciences, 2014, 15, 7639-7650.	1.8	36
57	Comparison of the reaction of bone-derived cells to enhanced MgCl ₂ -salt concentrations. Biomatter, 2014, 4, e967616.	2.6	38
58	Effects of extracellular magnesium on the differentiation and function of human osteoclasts. Acta Biomaterialia, 2014, 10, 2843-2854.	4.1	96
59	In vitro mechanical and corrosion properties of biodegradable Mg-Ag alloys. Materials and Corrosion - Werkstoffe Und Korrosion, 2014, 65, 569-576.	0.8	72
60	In vitro analysis of magnesium corrosion in orthopaedic biomaterials. , 2014, , 225-269.		0
61	Magnesium-based implants: a mini-review. Magnesium Research, 2014, 27, 142-154.	0.4	96
62	Production, characterisation, and cytocompatibility of porous titanium-based particulate scaffolds. Journal of Materials Science: Materials in Medicine, 2013, 24, 2337-2358.	1.7	25
63	A modular flow-chamber bioreactor concept as a tool for continuous 2D- and 3D-cell culture. BMC Proceedings, 2013, 7, .	1.8	2
64	Microstructure, mechanical and corrosion properties of Mg–Dy–Gd–Zr alloys for medical applications. Acta Biomaterialia, 2013, 9, 8499-8508.	4.1	92
65	Element distribution in the corrosion layer and cytotoxicity of alloy Mg–10Dy during in vitro biodegradation. Acta Biomaterialia, 2013, 9, 8475-8487.	4.1	87
66	Magnesium degradation as determined by artificial neural networks. Acta Biomaterialia, 2013, 9, 8722-8729.	4.1	57
67	Antibacterial biodegradable Mg-Ag alloys. , 2013, 25, 284-298.		186
68	Effects of corrosion environment and proteins on magnesium corrosion. Corrosion Engineering Science and Technology, 2012, 47, 335-339.	0.7	63
69	Influence of ageing treatment on microstructure, mechanical and bio-corrosion properties of Mg–Dy alloys. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 13, 36-44.	1.5	59
70	Ion release from magnesium materials in physiological solutions under different oxygen tensions. Journal of Materials Science: Materials in Medicine, 2012, 23, 9-24.	1.7	44
71	Biodegradable Magnesium Implants - How Do They Corrode in-vivo?. , 2011, , 17-17.		1
72	Mechanical and corrosion properties of binary Mg–Dy alloys for medical applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1827-1834.	1.7	86

#	Article	IF	Citations
73	Reprint of: Improved cytotoxicity testing of magnesium materials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1773-1777.	1.7	67
74	Examination of the inflammatory response following implantation of titanium plates coated with phospholipids in rats. Journal of Materials Science: Materials in Medicine, 2011, 22, 1015-1026.	1.7	9
75	Action potentials in primary osteoblasts and in the MG-63 osteoblast-like cell line. Journal of Bioenergetics and Biomembranes, 2011, 43, 311-322.	1.0	16
76	Ti–6Al–4V–0.5B—A Modified Alloy for Implants Produced by Metal Injection Molding. Advanced Engineering Materials, 2011, 13, B440.	1.6	21
77	Chemical surface alteration of biodegradable magnesium exposed to corrosion media. Acta Biomaterialia, 2011, 7, 2704-2715.	4.1	174
78	Improved cytotoxicity testing of magnesium materials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 830-834.	1.7	108
79	Magnesium (Mg) corrosion: a challenging concept for degradable implants. , 2011, , 403-425.		10
80	Corrosion Behavior of As-Cast Binary Mg-Dy Alloys. Materials Science Forum, 2011, 690, 417-421.	0.3	6
81	Biodegradable Magnesium Implants — How do They Corrode in-Vivo?. , 2011, , 17-17.		1
82	Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell linesa~†. Acta Biomaterialia, 2010, 6, 1834-1842.	4.1	496
83	XPS Studies of Magnesium Surfaces after Exposure to Dulbecco's Modified Eagle Medium, Hank's Buffered Salt Solution, and Simulated Body Fluid. Advanced Engineering Materials, 2010, 12, B699.	1.6	83
84	Magnesium alloys as implant materials – Principles of property design for Mg–RE alloysâ~†. Acta Biomaterialia, 2010, 6, 1714-1725.	4.1	503
85	Interference of magnesium corrosion with tetrazolium-based cytotoxicity assaysâ~†. Acta Biomaterialia, 2010, 6, 1813-1823.	4.1	150
86	Cytocompatibility of a free machining titanium alloy containing lanthanum. Journal of Biomedical Materials Research - Part A, 2009, 90A, 931-939.	2.1	16
87	Characterization of Phospholipid Bilayers on Tiâ€6Alâ€4V and Tiâ€6Alâ€7Nb. Advanced Engineering Materials, 2008, 10, B47.	1.6	5
88	Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, 2008, 12, 63-72.	5.6	1,537
89	Biodegradable magnesium–hydroxyapatite metal matrix composites. Biomaterials, 2007, 28, 2163-2174.	5.7	570
90	Phospholipids as implant coatings. Journal of Materials Science: Materials in Medicine, 2007, 18, 367-380.	1.7	31

#	ARTICLE	IF	CITATION
91	In-vitro interactions of human chondrocytes and mesenchymal stem cells, and of mouse macrophages with phospholipid-covered metallic implant materials., 2007, 13, 11-25.		12
92	Unphysiologically High Magnesium Concentrations Support Chondrocyte Proliferation and Redifferentiation. Tissue Engineering, 2006, 12, 3545-3556.	4.9	79
93	Unphysiologically High Magnesium Concentrations Support Chondrocyte Proliferation and Redifferentiation. Tissue Engineering, 2006, .	4.9	O
94	Bioreactor cultivation of three-dimensional cartilage-carrier-constructs. Bioprocess and Biosystems Engineering, 2005, 27, 273-280.	1.7	35
95	Biological Multi-layer Systems as Implant Surface Modification. Materialwissenschaft Und Werkstofftechnik, 2003, 34, 1084-1093.	0.5	16
96	Construction and Operation of a Bioreactor for Three-Dimensional Cartilage-Implants., 2001,, 568-570.		1
97	Powder Metallurgical Synthesis of Biodegradable Mg-Hydroxyapatite Composites for Biomedical Applications. Materials Science Forum, 0, 828-829, 165-171.	0.3	8