List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2170328/publications.pdf Version: 2024-02-01

XINLEL GE

#	Article	IF	CITATIONS
1	Influence of regional emission controls on the chemical composition, sources, and size distributions of submicron aerosols: Insights from the 2014 Nanjing Youth Olympic Games. Science of the Total Environment, 2022, 807, 150869.	8.0	10
2	Source identification and characterization of organic nitrogen in atmospheric aerosols at a suburban site in China. Science of the Total Environment, 2022, 818, 151800.	8.0	3
3	Atmospheric particle number size distribution and size-dependent formation rate and growth rate of neutral and charged new particles at a coastal site of eastern China. Atmospheric Environment, 2022, 270, 118899.	4.1	1
4	High-spatial-resolution distributions of aerosol chemical characteristics in urban Lanzhou, western China, during wintertime: Insights from an on-road mobile aerosol mass spectrometry measurement experiment. Science of the Total Environment, 2022, 819, 153069.	8.0	3
5	Secondary organic aerosol formation from monocyclic aromatic hydrocarbons:insights from laboratory studies. Environmental Sciences: Processes and Impacts, 2022, , .	3.5	6
6	Decay Kinetics and Absorption Changes of Methoxyphenols and Nitrophenols during Nitrate-Mediated Aqueous Photochemical Oxidation at 254 and 313 nm. ACS Earth and Space Chemistry, 2022, 6, 1115-1125.	2.7	6
7	Prediction of water quality based on SVR by fluorescence excitation-emission matrix and UV–Vis absorption spectrum. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 273, 121059.	3.9	11
8	Secondary organic aerosol formation from photooxidation of C3H6 under the presence of NH3: Effects of seed particles. Environmental Research, 2022, 211, 113064.	7.5	5
9	Chemical composition, sources and optical properties of nitrated aromatic compounds in fine particulate matter during winter foggy days in Nanjing, China. Environmental Research, 2022, 212, 113255.	7.5	4
10	Estimation of secondary PM _{2.5} in China and the United States using a multi-tracer approach. Atmospheric Chemistry and Physics, 2022, 22, 5495-5514.	4.9	11
11	Sources and processes of organic aerosol in non-refractory PM1 and PM2.5 during foggy and haze episodes in an urban environment of the Yangtze River Delta, China. Environmental Research, 2022, 212, 113557.	7.5	7
12	Spatial and temporal characteristics of air pollutants and their health effects in China during 2019–2020. Journal of Environmental Management, 2022, 317, 115460.	7.8	20
13	Characteristics, formation, and sources of PM2.5 in 2020 in Suzhou, Yangtze River Delta, China. Environmental Research, 2022, 212, 113545.	7.5	6
14	Optical and chemical properties and oxidative potential of aqueous-phase products from OH and ³ C ^{â^—} -initiated photooxidation of eugenol. Atmospheric Chemistry and Physics, 2022, 22, 7793-7814.	4.9	6
15	Chemical properties, sources and size-resolved hygroscopicity of submicron black-carbon-containing aerosols in urban Shanghai. Atmospheric Chemistry and Physics, 2022, 22, 8073-8096.	4.9	7
16	Disentangling drivers of air pollutant and health risk changes during the COVID-19 lockdown in China. Npj Climate and Atmospheric Science, 2022, 5, .	6.8	6
17	Recent progress in Bi ₂ WO ₆ â€Based photocatalysts for clean energy and environmental remediation: Competitiveness, challenges, and future perspectives. Nano Select, 2021, 2, 187-215.	3.7	31
18	Changes of air quality and its associated health and economic burden in 31 provincial capital cities in China during COVID-19 pandemic. Atmospheric Research, 2021, 249, 105328.	4.1	60

#	Article	IF	CITATIONS
19	Real-time non-refractory PM1 chemical composition, size distribution and source apportionment at a coastal industrial park in the Yangtze River Delta region, China. Science of the Total Environment, 2021, 763, 142968.	8.0	3
20	Aqueous production of secondary organic aerosol from fossil-fuel emissions in winter Beijing haze. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	75
21	Chemical and Optical Characteristics and Sources of PM2.5 Humic-Like Substances at Industrial and Suburban Sites in Changzhou, China. Atmosphere, 2021, 12, 276.	2.3	9
22	The Relative Contributions of Different Chemical Components to the Oxidative Potential of Ambient Fine Particles in Nanjing Area. International Journal of Environmental Research and Public Health, 2021, 18, 2789.	2.6	6
23	One-Year Real-Time Measurement of Black Carbon in the Rural Area of Qingdao, Northeastern China: Seasonal Variations, Meteorological Effects, and the COVID-19 Case Analysis. Atmosphere, 2021, 12, 394.	2.3	14
24	Characterization of Products from the Aqueous-Phase Photochemical Oxidation of Benzene-Diols. Atmosphere, 2021, 12, 534.	2.3	3
25	Chemical Characteristics and Sources of Water-Soluble Organic Nitrogen Species in PM2.5 in Nanjing, China. Atmosphere, 2021, 12, 574.	2.3	9
26	Elemental analysis of oxygenated organic coating on black carbon particles using a soot-particle aerosol mass spectrometer. Atmospheric Measurement Techniques, 2021, 14, 2799-2812.	3.1	5
27	Recent advances in bismuth-based multimetal oxide photocatalysts for hydrogen production from water splitting: Competitiveness, challenges, and future perspectives. Materials Reports Energy, 2021, 1, 100019.	3.2	17
28	Ambient marine shipping emissions determined by vessel operation mode along the East China Sea. Science of the Total Environment, 2021, 769, 144713.	8.0	14
29	Comparison of air pollutants and their health effects in two developed regions in China during the COVID-19 pandemic. Journal of Environmental Management, 2021, 287, 112296.	7.8	15
30	Seasonal variation of oxidative potential of water-soluble components in PM2.5 and PM1 in the Yangtze River Delta, China. Air Quality, Atmosphere and Health, 2021, 14, 1825-1836.	3.3	13
31	Sizeâ€dependent Molecular Characteristics and Possible Sources of Organic Aerosols at a Coastal New Particle Formation Hotspot of East China. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034610.	3.3	0
32	Comparative analysis of the chemical characteristics and sources of fine atmospheric particulate matter (PM2.5) at two sites in Changzhou, China. Atmospheric Pollution Research, 2021, 12, 101124.	3.8	12
33	Carbonâ€Based Electrocatalysts for Efficient Hydrogen Peroxide Production. Advanced Materials, 2021, 33, e2103266.	21.0	104
34	Comparative Toxic Effects of Manufactured Nanoparticles and Atmospheric Particulate Matter in Human Lung Epithelial Cells. International Journal of Environmental Research and Public Health, 2021, 18, 22.	2.6	10
35	Carbonâ€Based Electrocatalysts for Efficient Hydrogen Peroxide Production (Adv. Mater. 49/2021). Advanced Materials, 2021, 33,	21.0	3
36	Regional Differences in the Light Absorption Properties of Fine Particulate Matter Over the Tibetan Plateau: Insights From HRâ€ToFâ€AMS and Aethalometer Measurements. Journal of Geophysical Research D: Atmospheres, 2021, 126, .	3.3	4

#	Article	IF	CITATIONS
37	A preliminary study on wind tunnel simulations of the explosive growth and dissipation of fine particulate matter in ambient air. Atmospheric Research, 2020, 235, 104635.	4.1	4
38	Characteristics, sources and health risks of toxic species (PCDD/Fs, PAHs and heavy metals) in PM2.5 during fall and winter in an industrial area. Chemosphere, 2020, 238, 124620.	8.2	68
39	Aqueous-phase oxidation of three phenolic compounds by hydroxyl radical: Insight into secondary organic aerosol formation yields, mechanisms, products and optical properties. Atmospheric Environment, 2020, 223, 117240.	4.1	20
40	Mixing state and light absorption enhancement of black carbon aerosols in summertime Nanjing, China. Atmospheric Environment, 2020, 222, 117141.	4.1	29
41	Characteristics and potential source areas of aliphatic amines in PM2.5 in Yangzhou, China. Atmospheric Pollution Research, 2020, 11, 296-302.	3.8	16
42	COVIDâ€19 Impact on the Concentration and Composition of Submicron Particulate Matter in a Typical City of Northwest China. Geophysical Research Letters, 2020, 47, e2020GL089035.	4.0	33
43	Molecular characterization of biomass burning tracer compounds in fine particles in Nanjing, China. Atmospheric Environment, 2020, 240, 117837.	4.1	7
44	Aerosol Measurements by Soot Particle Aerosol Mass Spectrometer: a Review. Current Pollution Reports, 2020, 6, 440-451.	6.6	12
45	Recent Progress in Impacts of Mixing State on Optical Properties of Black Carbon Aerosol. Current Pollution Reports, 2020, 6, 380-398.	6.6	9
46	Carbohydrates observations in suburb Nanjing, Yangtze River of Delta during 2017–2018: Concentration, seasonal variation, and source apportionment. Atmospheric Environment, 2020, 243, 117843.	4.1	4
47	Brown carbon in atmospheric fine particles in Yangzhou, China: Light absorption properties and source apportionment. Atmospheric Research, 2020, 244, 105028.	4.1	42
48	Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze. Nature Communications, 2020, 11, 2844.	12.8	161
49	Puzzling Haze Events in China During the Coronavirus (COVIDâ€19) Shutdown. Geophysical Research Letters, 2020, 47, e2020GL088533.	4.0	165
50	Characteristics of Air Pollution and Their Relationship with Meteorological Parameters: Northern Versus Southern Cities of China. Atmosphere, 2020, 11, 253.	2.3	17
51	Light-absorbing and fluorescent properties of atmospheric brown carbon: A case study in Nanjing, China. Chemosphere, 2020, 251, 126350.	8.2	53
52	Chemical Characterization of Seasonal PM2.5 Samples and Their Cytotoxicity in Human Lung Epithelial Cells (A549). International Journal of Environmental Research and Public Health, 2020, 17, 4599.	2.6	17
53	Aqueous-Phase Production of Secondary Organic Aerosols from Oxidation of Dibenzothiophene (DBT). Atmosphere, 2020, 11, 151.	2.3	15
54	An unexpected catalyst dominates formation and radiative forcing of regional haze. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3960-3966.	7.1	132

#	Article	IF	CITATIONS
55	Characteristics of Black Carbon Particle-Bound Polycyclic Aromatic Hydrocarbons in Two Sites of Nanjing and Shanghai, China. Atmosphere, 2020, 11, 202.	2.3	13
56	Characteristics and potential sources of black carbon particles in suburban Nanjing, China. Atmospheric Pollution Research, 2020, 11, 981-991.	3.8	18
57	Temporal variations of six ambient criteria air pollutants from 2015 to 2018, their spatial distributions, health risks and relationships with socioeconomic factors during 2018 in China. Environment International, 2020, 137, 105556.	10.0	122
58	Validation of a sensitive high performance liquid chromatography tandem mass spectrometric method for measuring carbohydrates in aerosol samples. Journal of Chromatography A, 2020, 1619, 460941.	3.7	7
59	A highly efficient composite cathode for proton-conducting solid oxide fuel cells. Journal of Power Sources, 2020, 451, 227812.	7.8	54
60	Secondary organic aerosol formation from 3CâŽ-initiated oxidation of 4-ethylguaiacol in atmospheric aqueous-phase. Science of the Total Environment, 2020, 723, 137953.	8.0	20
61	Characterization of submicron organic particles in Beijing during summertime: comparison between SP-AMS and HR-AMS. Atmospheric Chemistry and Physics, 2020, 20, 14091-14102.	4.9	19
62	A 1-year characterization of organic aerosol composition and sources using an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF). Atmospheric Chemistry and Physics, 2020, 20, 7875-7893.	4.9	20
63	Activated bio-chars derived from rice husk via one- and two-step KOH-catalyzed pyrolysis for phenol adsorption. Science of the Total Environment, 2019, 646, 1567-1577.	8.0	248
64	A comprehensive investigation of aqueous-phase photochemical oxidation of 4-ethylphenol. Science of the Total Environment, 2019, 685, 976-985.	8.0	25
65	Investigation of formation mechanism of particulate matter in a laboratory-scale simulated cement kiln co-processing municipal sewage sludge. Journal of Cleaner Production, 2019, 234, 822-831.	9.3	15
66	Manganese oxide catalysts supported on zinc oxide nanorod arrays: A new composite for selective catalytic reduction of NOx with NH3 at low temperature. Applied Surface Science, 2019, 491, 579-589.	6.1	25
67	Organic Aerosol Processing During Winter Severe Haze Episodes in Beijing. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10248-10263.	3.3	56
68	Characterization of Size-Resolved Hygroscopicity of Black Carbon-Containing Particle in Urban Environment. Environmental Science & Technology, 2019, 53, 14212-14221.	10.0	27
69	Summertime aerosol volatility measurements in Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 10205-10216.	4.9	45
70	Evaluation of particulate matter deposition in the human respiratory tract during winter in Nanjing using size and chemically resolved ambient measurements. Air Quality, Atmosphere and Health, 2019, 12, 529-538.	3.3	19
71	Characterization of black carbon-containing fine particles in Beijing during wintertime. Atmospheric Chemistry and Physics, 2019, 19, 447-458.	4.9	84
72	Vertical characterization of aerosol optical properties and brown carbon in winter in urban Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 165-179.	4.9	73

#	Article	IF	CITATIONS
73	Organic aerosol source apportionment in Zurich using an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF-MS) – PartÂ2: Biomass burning influences in winter. Atmospheric Chemistry and Physics, 2019, 19, 8037-8062.	4.9	57
74	Light absorption enhancement of black carbon in urban Beijing in summer. Atmospheric Environment, 2019, 213, 499-504.	4.1	49
75	Contrasting physical properties of black carbon in urban Beijing between winter and summer. Atmospheric Chemistry and Physics, 2019, 19, 6749-6769.	4.9	89
76	In vitro toxicity evaluation of heavy metals in urban air particulate matter on human lung epithelial cells. Science of the Total Environment, 2019, 678, 301-308.	8.0	83
77	Chemical Characterization of Two Seasonal PM2.5 Samples in Nanjing and Its Toxicological Properties in Three Human Cell Lines. Environments - MDPI, 2019, 6, 42.	3.3	9
78	Significant secondary organic aerosol production from aqueous-phase processing of two intermediate volatility organic compounds. Atmospheric Environment, 2019, 211, 63-68.	4.1	22
79	Chemical Characteristics of PM2.5 and Water-Soluble Organic Nitrogen in Yangzhou, China. Atmosphere, 2019, 10, 178.	2.3	18
80	Impacts of relative humidity on fine aerosol properties via environmental wind tunnel experiments. Atmospheric Environment, 2019, 206, 21-29.	4.1	6
81	Changes in Aerosol Chemistry From 2014 to 2016 in Winter in Beijing: Insights From Highâ€Resolution Aerosol Mass Spectrometry. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1132-1147.	3.3	155
82	Vertical Characterization and Source Apportionment of Water-Soluble Organic Aerosol with High-resolution Aerosol Mass Spectrometry in Beijing, China. ACS Earth and Space Chemistry, 2019, 3, 273-284.	2.7	28
83	Chemical processing of water-soluble species and formation of secondary organic aerosol in fogs. Atmospheric Environment, 2019, 200, 158-166.	4.1	66
84	Investigating the PM2.5 mass concentration growth processes during 2013–2016 in Beijing and Shanghai. Chemosphere, 2019, 221, 452-463.	8.2	50
85	Chemical pyrolysis of E-waste plastics: Char characterization. Journal of Environmental Management, 2018, 214, 94-103.	7.8	46
86	Aqueous-Phase Secondary Organic Aerosol Formation Via Reactions with Organic Triplet Excited States—a Short Review. Current Pollution Reports, 2018, 4, 8-12.	6.6	19
87	Thermochemical treatment of non-metallic residues from waste printed circuit board: Pyrolysis vs. combustion. Journal of Cleaner Production, 2018, 176, 1045-1053.	9.3	49
88	Chemical characteristics of submicron particles at the central Tibetan Plateau: insights from aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2018, 18, 427-443.	4.9	42
89	Characterization of PM10 surrounding a cement plant with integrated facilities for co-processing of hazardous wastes. Journal of Cleaner Production, 2018, 186, 831-839.	9.3	18
90	Aqueous Hg(II) immobilization by chitosan stabilized magnetic iron sulfide nanoparticles. Science of the Total Environment, 2018, 621, 1074-1083.	8.0	75

#	Article	IF	CITATIONS
91	Facile fabrication of direct solid-state Z-scheme g-C ₃ N ₄ /Fe ₂ O ₃ heterojunction: a cost-effective photocatalyst with high efficiency for the degradation of aqueous organic pollutants. Dalton Transactions, 2018, 47, 15382-15390.	3.3	56
92	Responses of secondary aerosols to relative humidity and photochemical activities in an industrialized environment during late winter. Atmospheric Environment, 2018, 193, 66-78.	4.1	49
93	Production of N ₂ O ₅ and ClNO ₂ in summer in urban Beijing, China. Atmospheric Chemistry and Physics, 2018, 18, 11581-11597.	4.9	57
94	Co-pyrolysis of E-Waste Nonmetallic Residues with Biowastes. ACS Sustainable Chemistry and Engineering, 2018, 6, 9086-9093.	6.7	33
95	Bioaccessibility and health risk of trace elements in fine particulate matter in different simulated body fluids. Atmospheric Environment, 2018, 186, 1-8.	4.1	34
96	Characterization of Fine Particulate Matter and Associated Health Burden in Nanjing. International Journal of Environmental Research and Public Health, 2018, 15, 602.	2.6	40
97	Characteristics and sources of ambient refractory black carbon aerosols: Insights from soot particle aerosol mass spectrometer. Atmospheric Environment, 2018, 185, 147-152.	4.1	16
98	Micro-mesoporous carbons from original and pelletized rice husk via one-step catalytic pyrolysis. Bioresource Technology, 2018, 269, 67-73.	9.6	72
99	Seasonal light absorption properties of water-soluble brown carbon in atmospheric fine particles in Nanjing, China. Atmospheric Environment, 2018, 187, 230-240.	4.1	80
100	Laboratory observations of temperature and humidity dependencies of nucleation and growth rates of subâ€3 nm particles. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1919-1929.	3.3	24
101	Air pollution characteristics and health risks in Henan Province, China. Environmental Research, 2017, 156, 625-634.	7.5	101
102	Investigation of submicron aerosol characteristics in Changzhou, China: Composition, source, and comparison with co-collected PM2.5. Chemosphere, 2017, 183, 176-185.	8.2	37
103	Aerosol characteristics and sources in Yangzhou, China resolved by offline aerosol mass spectrometry and other techniques. Environmental Pollution, 2017, 225, 74-85.	7.5	82
104	Hydrothermal carbonization of medical wastes and lignocellulosic biomass for solid fuel production from lab-scale to pilot-scale. Energy, 2017, 118, 312-323.	8.8	137
105	Promotional effect of rare earth-doped manganese oxides supported on activated semi-coke for selective catalytic reduction of NO with NH3. Environmental Science and Pollution Research, 2017, 24, 24473-24484.	5.3	23
106	Exploration of biodegradation mechanisms of black carbon-bound nonylphenol in black carbon-amended sediment. Environmental Pollution, 2017, 231, 752-760.	7.5	11
107	CO ₂ -looping in biomass pyrolysis or gasification. Sustainable Energy and Fuels, 2017, 1, 1700-1729.	4.9	98
108	Light absorption by water-soluble organic carbon in atmospheric fine particles in the central Tibetan Plateau, Environmental Science and Pollution Research, 2017, 24, 21386-21397.	5.3	28

#	Article	IF	CITATIONS
109	Adsorption-Desorption Characteristics of Nonylphenol on Two Different Origins of Black Carbon. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	7
110	Seasonal Characterization of Organic Nitrogen in Atmospheric Aerosols Using High Resolution Aerosol Mass Spectrometry in Beijing, China. ACS Earth and Space Chemistry, 2017, 1, 673-682.	2.7	42
111	First Chemical Characterization of Refractory Black Carbon Aerosols and Associated Coatings over the Tibetan Plateau (4730 m a.s.l). Environmental Science & amp; Technology, 2017, 51, 14072-14082.	10.0	55
112	Role of biochar in biodegradation of nonylphenol in sediment: Increasing microbial activity versus decreasing bioavailability. Scientific Reports, 2017, 7, 4726.	3.3	15
113	C1-C2 alkyl aminiums in urban aerosols: Insights from ambient and fuel combustion emission measurements in the Yangtze River Delta region of China. Environmental Pollution, 2017, 230, 12-21.	7.5	29
114	Modeling biogenic and anthropogenic secondary organic aerosol in China. Atmospheric Chemistry and Physics, 2017, 17, 77-92.	4.9	137
115	Chemical characterization of fine particulate matter in Changzhou, China, and source apportionment with offline aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2017, 17, 2573-2592.	4.9	86
116	Performance of Two Bioswales on Urban Runoff Management. Infrastructures, 2017, 2, 12.	2.8	12
117	Chemical and Light Extinction Characteristics of Atmospheric Aerosols in Suburban Nanjing, China. Atmosphere, 2017, 8, 149.	2.3	15
118	Summertime Day-Night Differences of PM2.5 Components (Inorganic Ions, OC, EC, WSOC, WSON, HULIS,) Tj ET	Qq0,0 0 rg 2.3	gBŢ /Overloc
119	Characteristics and Formation Mechanisms of Fine Particulate Nitrate in Typical Urban Areas in China. Atmosphere, 2017, 8, 62.	2.3	52
120	Seasonal Variations and Sources of 17 Aerosol Metal Elements in Suburban Nanjing, China. Atmosphere, 2016, 7, 153.	2.3	41
121	Wintertime organic and inorganic aerosols in Lanzhou, China: sources, processes, and comparison with the results during summer. Atmospheric Chemistry and Physics, 2016, 16, 14937-14957.	4.9	83
122	Chemical Records in Snowpits from High Altitude Glaciers in the Tibetan Plateau and Its Surroundings. PLoS ONE, 2016, 11, e0155232.	2.5	11
123	Regional Influence of Aerosol Emissions from Wildfires Driven by Combustion Efficiency: Insights from the BBOP Campaign. Environmental Science & Technology, 2016, 50, 8613-8622.	10.0	89
124	Source identification of trace elements in the atmosphere during the second Asian Youth Games in Nanjing, China: Influence of control measures on air quality. Atmospheric Pollution Research, 2016, 7, 547-556.	3.8	47

125	By-products recycling for syngas cleanup in biomass pyrolysis – An overview. Renewable and Sustainable Energy Reviews, 2016, 59, 1246-1268.	16.4	109
126	Quantitative Relationship between Cadmium Uptake and the Kinetics of Phytochelatin Induction by	3.3	18

Quantitative Relationship between Cadmium Uptake and the Kinetics of Phytochelatin Induction by Cadmium in a Marine Diatom. Scientific Reports, 2016, 6, 35935. 3.3126

#	Article	IF	CITATIONS
127	Primary and secondary aerosols in Beijing in winter: sources, variations and processes. Atmospheric Chemistry and Physics, 2016, 16, 8309-8329.	4.9	288
128	Highly time-resolved urban aerosol characteristics during springtime in Yangtze River Delta, China: insights from soot particle aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2016, 16, 9109-9127.	4.9	96
129	The partitioning behavior of trace element and its distribution in the surrounding soil of a cement plant integrated utilization of hazardous wastes. Environmental Science and Pollution Research, 2016, 23, 13943-13953.	5.3	7
130	Oil sludge recycling by ash-catalyzed pyrolysis-reforming processes. Fuel, 2016, 182, 871-878.	6.4	47
131	Observation of Fullerene Soot in Eastern China. Environmental Science and Technology Letters, 2016, 3, 121-126.	8.7	67
132	Catalytic oxidation of nitric oxide (NO) with carbonaceous materials. RSC Advances, 2016, 6, 8469-8482.	3.6	40
133	Waste-to-energy: Dehalogenation of plastic-containing wastes. Waste Management, 2016, 49, 287-303.	7.4	86
134	Chemical composition and size distribution of summertime PM _{2.5} at a high altitude remote location in the northeast of the Qinghai–Xizang (Tibet) Plateau: insights into aerosol sources and processing in free troposphere. Atmospheric Chemistry and Physics, 2015, 15, 5069-5081.	4.9	77
135	Fuel nitrogen conversion and release of nitrogen oxides during coal gangue calcination. Environmental Science and Pollution Research, 2015, 22, 7139-7146.	5.3	23
136	Catalytic CO ₂ Gasification of Rice Husk Char for Syngas and Silica-Based Nickel Nanoparticles Production. Industrial & Engineering Chemistry Research, 2015, 54, 8919-8928.	3.7	22
137	Thermodynamic modeling of electrolyte solutions by a hybrid ion-interaction and solvation (HIS) model. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2015, 48, 79-88.	1.6	5
138	Toward Understanding Amines and Their Degradation Products from Postcombustion CO ₂ Capture Processes with Aerosol Mass Spectrometry. Environmental Science & Technology, 2014, 48, 5066-5075.	10.0	52
139	Pyrite transformation and sulfur dioxide release during calcination of coal gangue. RSC Advances, 2014, 4, 42506-42513.	3.6	27
140	Chemical composition, sources, and processes of urban aerosols during summertime in northwest China: insights from high-resolution aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2014, 14, 12593-12611.	4.9	132
141	An Isotherm-Based Thermodynamic Model of Multicomponent Aqueous Solutions, Applicable Over the Entire Concentration Range. Journal of Physical Chemistry A, 2013, 117, 3198-3213.	2.5	39
142	The impact of relative humidity on aerosol composition and evolution processes during wintertime in Beijing, China. Atmospheric Environment, 2013, 77, 927-934.	4.1	330
143	Dissolved Organic Matter and Inorganic Ions in a Central Himalayan Glacier—Insights into Chemical Composition and Atmospheric Sources. Environmental Science & Technology, 2013, 47, 6181-6188.	10.0	55

144 Thermodynamic modeling of atmospheric aerosols: 0-100% relative humidity. , 2013, , .

0

#	ARTICLE	IF	CITATIONS
145	Effect of aqueous-phase processing on aerosol chemistry and size distributions in Fresno, California, during wintertime. Environmental Chemistry, 2012, 9, 221.	1.5	159
146	Statistical Mechanics of Multilayer Sorption: 2. Systems Containing Multiple Solutes. Journal of Physical Chemistry C, 2012, 116, 1850-1864.	3.1	32
147	Primary and secondary organic aerosols in Fresno, California during wintertime: Results from high resolution aerosol mass spectrometry. Journal of Geophysical Research, 2012, 117, .	3.3	133
148	Statistical Mechanics of Multilayer Sorption: Extension of the Brunauer–Emmett–Teller (BET) and Guggenheim–Anderson–de Boer (GAB) Adsorption Isotherms. Journal of Physical Chemistry C, 2011, 115, 16474-16487.	3.1	64
149	Atmospheric amines $\hat{a} \in $ Part I. A review. Atmospheric Environment, 2011, 45, 524-546.	4.1	725
150	Atmospheric amines $\hat{a} \in$ "Part II. Thermodynamic properties and gas/particle partitioning. Atmospheric Environment, 2011, 45, 561-577.	4.1	231
151	Retention, Recovery and Recycling of Metal Values from High Alloyed Steel Slags. Archives of Metallurgy and Materials, 2010, 55, 1097-1104.	0.6	5
152	Copper extraction from copper ore by electro-reduction in molten CaCl2–NaCl. Electrochimica Acta, 2009, 54, 4397-4402.	5.2	41
153	Calculations of Freezing Point Depression, Boiling Point Elevation, Vapor Pressure and Enthalpies ofÂVaporization of Electrolyte Solutions by a Modified Three-Characteristic Parameter Correlation Model. Journal of Solution Chemistry, 2009, 38, 1097-1117.	1.2	22
154	Estimation of Freezing Point Depression, Boiling Point Elevation, and Vaporization Enthalpies of Electrolyte Solutions. Industrial & amp; Engineering Chemistry Research, 2009, 48, 2229-2235.	3.7	34
155	A Simple Two-Parameter Correlation Model for Aqueous Electrolyte Solutions across a Wide Range of Temperatures. Journal of Chemical & Engineering Data, 2009, 54, 179-186.	1.9	17
156	Correlation and Prediction of Thermodynamic Properties of Nonaqueous Electrolytes by the Modified TCPC Model. Journal of Chemical & Engineering Data, 2008, 53, 149-159.	1.9	16
157	Correlation and Prediction of Thermodynamic Properties of Some Complex Aqueous Electrolytes by the Modified Three-Characteristic-Parameter Correlation Model. Journal of Chemical & Engineering Data, 2008, 53, 950-958.	1.9	22
158	Extension of the Three-Particle-Interaction Model for Electrolyte Solutions. Materials and Manufacturing Processes, 2008, 23, 737-742.	4.7	2
159	Phase relationship of complex multi-component system in chromate cleaner production. Progress in Natural Science: Materials International, 2007, 17, 845-850.	4.4	0
160	Correlation and Prediction of Activity and Osmotic Coefficients of Aqueous Electrolytes at 298.15 K by the Modified TCPC Model. Journal of Chemical & amp; Engineering Data, 2007, 52, 538-547.	1.9	43
161	A new three-particle-interaction model to predict the thermodynamic properties of different electrolytes. Journal of Chemical Thermodynamics, 2007, 39, 602-612.	2.0	11