
Robert Howarth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2170226/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NONPOINT POLLUTION OF SURFACE WATERS WITH PHOSPHORUS AND NITROGEN. , 1998, 8, 559-568.		4,255
2	Nitrogen Cycles: Past, Present, and Future. Biogeochemistry, 2004, 70, 153-226.	3.5	4,203
3	Forecasting Agriculturally Driven Global Environmental Change. Science, 2001, 292, 281-284.	12.6	3,068
4	Controlling Eutrophication: Nitrogen and Phosphorus. Science, 2009, 323, 1014-1015.	12.6	2,998
5	Nitrogen limitation on land and in the sea: How can it occur?. Biogeochemistry, 1991, 13, 87.	3.5	2,801
6	The Nitrogen Cascade. BioScience, 2003, 53, 341.	4.9	2,278
7	HUMAN ALTERATION OF THE GLOBAL NITROGEN CYCLE: SOURCES AND CONSEQUENCES. , 1997, 7, 737-750.		1,682
8	Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochemistry, 1996, 35, 75-139.	3.5	1,300
9	Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over three decades. Limnology and Oceanography, 2006, 51, 364-376.	3.1	1,124
10	Methane and the greenhouse-gas footprint of natural gas from shale formations. Climatic Change, 2011, 106, 679-690.	3.6	1,035
11	Reconciling Carbon-cycle Concepts, Terminology, and Methods. Ecosystems, 2006, 9, 1041-1050.	3.4	904
12	Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochemical Cycles, 1999, 13, 623-645.	4.9	811
13	Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry, 2002, 57, 1-45.	3.5	719
14	Nutrient Limitation of Net Primary Production in Marine Ecosystems. Annual Review of Ecology, Evolution, and Systematics, 1988, 19, 89-110.	6.7	692
15	Coastal nitrogen pollution: A review of sources and trends globally and regionally. Harmful Algae, 2008, 8, 14-20.	4.8	683
16	Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Frontiers in Ecology and the Environment, 2011, 9, 18-26.	4.0	656
17	Climate change impacts on U.S. Coastal and Marine Ecosystems. Estuaries and Coasts, 2002, 25, 149-164.	1.7	622
18	Multiple Stable Isotopes Used to Trace the Flow of Organic Matter in Estuarine Food Webs. Science, 1985, 227, 1361-1363.	12.6	547

#	Article	IF	CITATIONS
19	Eutrophication of freshwater and marine ecosystems. Limnology and Oceanography, 2006, 51, 351-355.	3.1	535
20	Title is missing!. Biogeochemistry, 2002, 57, 137-169.	3.5	516
21	Should fracking stop?. Nature, 2011, 477, 271-275.	27.8	477
22	Sources of nutrient pollution to coastal waters in the United States: Implications for achieving coastal water quality goals. Estuaries and Coasts, 2002, 25, 656-676.	1.7	466
23	Sulfur, carbon, and nitrogen isotopes used to trace organic matter flow in the saltâ€marsh estuaries of Sapelo Island, Georgia1. Limnology and Oceanography, 1987, 32, 1195-1213.	3.1	431
24	Potential climate-change impacts on the Chesapeake Bay. Estuarine, Coastal and Shelf Science, 2010, 86, 1-20.	2.1	415
25	Title is missing!. Biogeochemistry, 2002, 57, 199-237.	3.5	403
26	Title is missing!. Biogeochemistry, 2002, 57, 171-197.	3.5	396
27	Human health effects of a changing global nitrogen cycle. Frontiers in Ecology and the Environment, 2003, 1, 240-246.	4.0	370
28	How green is blue hydrogen?. Energy Science and Engineering, 2021, 9, 1676-1687.	4.0	357
29	Sulfate reduction in a New England salt marsh1. Limnology and Oceanography, 1979, 24, 999-1013.	3.1	350
30	Nitrogen Use in the United States from 1961–2000 and Potential Future Trends. Ambio, 2002, 31, 88-96.	5.5	334
31	Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Rates and importance. Limnology and Oceanography, 1988, 33, 669-687.	3.1	325
32	Oxidationâ€reduction potentials in a salt marsh: Spatial patterns and interactions with primary production1. Limnology and Oceanography, 1981, 26, 350-360.	3.1	320
33	Title is missing!. Biogeochemistry, 2002, 57, 267-293.	3.5	298
34	Toward a better understanding and quantification of methane emissions from shale gas development. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6237-6242.	7.1	296
35	Nitrogen fluxes from the landscape are controlled by net anthropogenic nitrogen inputs and by climate. Frontiers in Ecology and the Environment, 2012, 10, 37-43.	4.0	281
36	Pyrite: Its Rapid Formation in a Salt Marsh and Its Importance in Ecosystem Metabolism. Science, 1979, 203, 49-51.	12.6	277

#	Article	IF	CITATIONS
37	A bridge to nowhere: methane emissions and the greenhouse gas footprint of natural gas. Energy Science and Engineering, 2014, 2, 47-60.	4.0	274
38	Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. , 1996, , 75-139.		264
39	The ecological significance of sulfur in the energy dynamics of salt marsh and coastal marine sediments. Biogeochemistry, 1984, 1, 5-27.	3.5	243
40	Riverine nitrogen export from the continents to the coasts. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	4.9	239
41	Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Biogeochemical controls. Limnology and Oceanography, 1988, 33, 688-701.	3.1	236
42	Oil spill studies: A review of ecological effects. Environmental Management, 1984, 8, 27-43.	2.7	220
43	Molybdenum Availability, Nitrogen Limitation, and Phytoplankton Growth in Natural Waters. Science, 1985, 229, 653-655.	12.6	219
44	Formation of 35S-labelled elemental sulfur and pyrite in coastal marine sediments (Limfjorden and) Tj ETQq0 0 0 Cosmochimica Acta, 1984, 48, 1807-1818.	rgBT /Ove 3.9	rlock 10 Tf 5(218
45	Linking environmental nutrient enrichment and disease emergence in humans and wildlife. Ecological Applications, 2010, 20, 16-29.	3.8	213
46	The impact of accelerating land-use change on the N-Cycle of tropical aquatic ecosystems: Current conditions and projected changes. Biogeochemistry, 1999, 46, 109-148.	3.5	209
47	Atmospheric Deposition of Nitrogen Oxides onto the Landscape Contributes to Coastal Eutrophication in the Northeast United States. Environmental Science & Technology, 1997, 31, 1995-2004.	10.0	186
48	Porewater evidence for a dynamic sedimentary iron cycle in salt marshes1. Limnology and Oceanography, 1984, 29, 47-63.	3.1	176
49	Rapid Communication: Climatic Control on Eutrophication of the Hudson River Estuary. Ecosystems, 2000, 3, 210-215.	3.4	173
50	Forms and availability of sediment phosphorus in carbonate sand of Bermuda seagrass beds. Limnology and Oceanography, 1998, 43, 799-810.	3.1	166
51	Examining the feasibility of converting New York State's all-purpose energy infrastructure to one using wind, water, and sunlight. Energy Policy, 2013, 57, 585-601.	8.8	162
52	Soil-plant interactions in a neotropical mangrove forest: iron, phosphorus and sulfur dynamics. Oecologia, 1998, 115, 553-563.	2.0	159
53	Sulfur and Carbon Isotopes as Tracers of Salt-Marsh Organic Matter Flow. Ecology, 1986, 67, 865-874.	3.2	154
54	Sulfate reduction in the salt marshes at Sapelo Island, Georgia1. Limnology and Oceanography, 1983, 28, 70-82.	3.1	149

#	Article	IF	CITATIONS
55	Net anthropogenic nitrogen inputs to watersheds and riverine N export to coastal waters: a brief overview. Current Opinion in Environmental Sustainability, 2012, 4, 203-211.	6.3	145
56	Carbon, nitrogen, and phosphorus dynamics during leaf decay in nutrient-enriched stream microecosystems. Freshwater Biology, 1976, 6, 221-228.	2.4	142
57	Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Rates and importance1. Limnology and Oceanography, 1988, 33, 669-687.	3.1	137
58	Inputs of Sediment and Carbon to an Estuarine Ecosystem: Influence of Land Use. , 1991, 1, 27-39.		129
59	Metabolism and Organic Carbon Fluxes in the Tidal Freshwater Hudson River. Estuaries and Coasts, 1996, 19, 848.	1.7	128
60	Pyrite formation and the measurement of sulfate reduction in salt marsh sediments1. Limnology and Oceanography, 1984, 29, 598-608.	3.1	127
61	Title is missing!. Nutrient Cycling in Agroecosystems, 1998, 52, 213-223.	2.2	125
62	Evaluating regional variation of net anthropogenic nitrogen and phosphorus inputs (NANI/NAPI), major drivers, nutrient retention pattern and management implications in the multinational areas of Baltic Sea basin. Ecological Modelling, 2012, 227, 117-135.	2.5	125
63	Pyrite and oxidized iron mineral phases formed from pyrite oxidation in salt marsh and estuarine sediments. Geochimica Et Cosmochimica Acta, 1982, 46, 2665-2669.	3.9	124
64	The New Gold Rush: Fueling Ethanol Production while Protecting Water Quality. Journal of Environmental Quality, 2008, 37, 318-324.	2.0	122
65	Sulfur, iron and organic carbon fluxes in the Black Sea: sulfur isotopic evidence for origin of sulfur fluxes. Deep-sea Research Part A, Oceanographic Research Papers, 1991, 38, S1151-S1187.	1.5	118
66	Characterization of nutrient, organic carbon, and sediment loads and concentrations from the Mississippi River into the northern Gulf of Mexico. Estuaries and Coasts, 2007, 30, 773-790.	2.2	118
67	Nutrients in synergy. Nature, 2007, 449, 1000-1001.	27.8	115
68	POTENTIAL EFFECTS OF CLIMATE CHANGE ON FRESHWATER ECOSYSTEMS OF THE NEW ENGLAND/MID-ATLANTIC REGION. , 1997, 11, 925-947.		114
69	Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 2. Biogeochemical controls1. Limnology and Oceanography, 1988, 33, 688-701.	3.1	106
70	Energy Flow in a Salt Marsh Ecosystem: The Role of Reduced Inorganic Sulfur Compounds. American Naturalist, 1980, 116, 862-872.	2.1	104
71	Sterols in decomposing Spartina alterniflora and the use of ergosterol in estimating the contribution of fungi to detrital nitrogen1. Limnology and Oceanography, 1980, 25, 290-303.	3.1	102
72	Estimating Net Anthropogenic Nitrogen Inputs to U.S. Watersheds: Comparison of Methodologies. Environmental Science & Technology, 2013, 47, 5199-5207.	10.0	99

#	Article	IF	CITATIONS
73	Atmospheric Oxygen Exchange in the Hudson River: Dome Measurements and Comparison with Other Natural Waters. Estuaries and Coasts, 1993, 16, 433.	1.7	98
74	Nitrogen and phosphorus budgets of the North Atlantic Ocean and its watershed. Biogeochemistry, 1996, 35, 3-25.	3.5	96
75	Changes in anthropogenic nitrogen and phosphorus inputs to the St. Lawrence subâ€basin over 110 years and impacts on riverine export. Global Biogeochemical Cycles, 2016, 30, 1000-1014.	4.9	92
76	A toolbox for calculating net anthropogenic nitrogen inputs (NANI). Environmental Modelling and Software, 2011, 26, 623-633.	4.5	91
77	Ideas and perspectives: is shale gas a major driver of recent increase in global atmospheric methane?. Biogeosciences, 2019, 16, 3033-3046.	3.3	91
78	Eddy correlation measurements of oxygen fluxes in permeable sediments exposed to varying current flow and light. Limnology and Oceanography, 2013, 58, 1329-1343.	3.1	90
79	Venting and leaking of methane from shale gas development: response to Cathles et al Climatic Change, 2012, 113, 537-549.	3.6	89
80	Reducing agricultural nutrient surpluses in a large catchment – Links to livestock density. Science of the Total Environment, 2019, 648, 1549-1559.	8.0	88
81	Sulfur storage and alkalinity generation in New England lake sediments. Limnology and Oceanography, 1990, 35, 852-869.	3.1	87
82	Coastal marine eutrophication: Control of both nitrogen and phosphorus is necessary. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, E103; author reply E104.	7.1	86
83	Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern U.S.A. , 2002, , 137-169.		80
84	Fixing the Global Nitrogen Problem. Scientific American, 2010, 302, 64-71.	1.0	80
85	Nitrogen as a threat to European water quality. , 2011, , 379-404.		80
86	Nitrogen use efficiency and crop production: Patterns of regional variation in the United States, 1987–2012. Science of the Total Environment, 2018, 635, 498-511.	8.0	77
87	Human activities changing the nitrogen cycle in Brazil. Biogeochemistry, 2006, 79, 61-89.	3.5	73
88	A Century of Legacy Phosphorus Dynamics in a Large Drainage Basin. Global Biogeochemical Cycles, 2018, 32, 1107-1122.	4.9	67
89	Enhanced N input to Lake Dianchi Basin from 1980 to 2010: Drivers and consequences. Science of the Total Environment, 2015, 505, 376-384.	8.0	66
90	A roadmap for repowering California for all purposes with wind, water, and sunlight. Energy, 2014, 73, 875-889.	8.8	65

#	Article	IF	CITATIONS
91	Methane emissions and climatic warming risk from hydraulic fracturing and shale gas development: implications for policy. Energy and Emission Control Technologies, 0, , 45.	0.5	65
92	Bloom formation in heterocystic nitrogenâ€fixing cyanobacteria: The dependence on colony size and zooplankton grazing. Limnology and Oceanography, 2004, 49, 2171-2178.	3.1	64
93	Molybdenum assimilation by cyanobacteria and phytoplankton in freshwater and salt water. Limnology and Oceanography, 1993, 38, 25-35.	3.1	62
94	Molybdenum and sulfate as controls on the abundance of nitrogen-fixing cyanobacteria in saline lakes in Alberta. Limnology and Oceanography, 1990, 35, 245-259.	3.1	60
95	Ocean urea fertilization for carbon credits poses high ecological risks. Marine Pollution Bulletin, 2008, 56, 1049-1056.	5.0	58
96	Nitrogen flows from European regional watersheds to coastal marine waters. , 0, , 271-297.		54
97	THE REGULATION OF DECOMPOSITION AND HETEROTROPHIC MICROBIAL ACTIVITY IN SALT MARSH SOILS: A REVIEW. , 1982, , 183-207.		53
98	A novel approach for estimating ecosystem production and respiration in estuaries: Application to the oligohaline and mesohaline Hudson River. Limnology and Oceanography, 1999, 44, 1509-1521.	3.1	51
99	Nitrogen cycling and anthropogenic impact in the tropical interamerican seas. Biogeochemistry, 1999, 46, 163-178.	3.5	51
100	Towards an ecological understanding of biological nitrogen fixation. , 2002, , 1-45.		50
101	Roads as nitrogen deposition hot spots. Biogeochemistry, 2013, 114, 149-163.	3.5	49
102	Sources of reactive nitrogen affecting ecosystems in Latin America and the Caribbean: current trends and future perspectives. Biogeochemistry, 2006, 79, 3-24.	3.5	48
103	Ecological and Biogeochemical Interactions Constrain Planktonic Nitrogen Fixation in Estuaries. Ecosystems, 2002, 5, 719-725.	3.4	46
104	Nitrogen retention in rivers: model development and application to watersheds in the northeastern U.S.A , 2002, , 199-237.		46
105	Anthropogenic point-source and non-point-source nitrogen inputs into Huai River basin and their impacts on riverine ammonia–nitrogen flux. Biogeosciences, 2015, 12, 4275-4289.	3.3	43
106	Estimating net anthropogenic nitrogen inputs (NANI) in the Lake Dianchi basin of China. Biogeosciences, 2014, 11, 4577-4586.	3.3	41
107	Nitrogen fixation in Flax Pond: A Long Island salt marsh1. Limnology and Oceanography, 1975, 20, 640-643.	3.1	39
108	Opportunities to reduce nutrient inputs to the Baltic Sea by improving manure use efficiency in agriculture. Regional Environmental Change, 2018, 18, 1843-1854.	2.9	39

#	Article	IF	CITATIONS
109	Sulfate inhibition of molybdenum-dependent nitrogen fixation by planktonic cyanobacteria under seawater conditions: a non-reversible effect. Hydrobiologia, 2003, 500, 277-293.	2.0	38
110	Sulfate inhibition of molybdate assimilation by planktonic algae and bacteria: some implications for the aquatic nitrogen cycle. Biogeochemistry, 1986, 2, 179-196.	3.5	36
111	Nitrogen in Runoff from Residential Roads in a Coastal Area. Water, Air, and Soil Pollution, 2010, 210, 3-13.	2.4	35
112	Early diagenesis of organic matter in sediments off the coast of Peru. Deep-sea Research Part A, Oceanographic Research Papers, 1985, 32, 43-55.	1.5	34
113	Metabolism of a nitrogen-enriched coastal marine lagoon during the summertime. Biogeochemistry, 2014, 118, 1-20.	3.5	34
114	Nutrient Limitation of the Macroalga, Penicillus capitatus, Associated with Subtropical Seagrass Meadows in Bermuda. Estuaries and Coasts, 1992, 15, 18.	1.7	33
115	Modeling Water, Sediment and Organic Carbon Discharges in the Hudson-Mohawk Basin: Coupling to Terrestrial Sources. Estuaries and Coasts, 1996, 19, 833.	1.7	33
116	Net anthropogenic phosphorus inputs and riverine phosphorus fluxes in highly populated headwater watersheds in China. Biogeochemistry, 2015, 126, 269-283.	3.5	33
117	Role of external inputs of nutrients to aquatic ecosystems in determining prevalence of nitrogen vs. phosphorus limitation of net primary productivity. Biogeochemistry, 2021, 154, 293-306.	3.5	33
118	The Measurement of Primary Production in Aquatic Ecosystems. , 2000, , 72-85.		33
119	Eutrophication: Time to Adjust Expectations—Response. Science, 2009, 324, 724-725.	12.6	32
120	Exchange of Nitrogen and Phosphorus Between a Shallow Lagoon and Coastal Waters. Estuaries and Coasts, 2014, 37, 63-73.	2.2	32
121	Phosphorus use efficiency and crop production: Patterns of regional variation in the United States, 1987–2012. Science of the Total Environment, 2019, 685, 174-188.	8.0	32
122	Do top-down and bottom-up controls interact to exclude nitrogen-fixing cyanobacteria from the plankton of estuaries? An exploration with a simulation model. Biogeochemistry, 1999, 46, 203-231.	3.5	31
123	Modeling future scenarios of light attenuation and potential seagrass success in a eutrophic estuary. Estuarine, Coastal and Shelf Science, 2014, 149, 13-23.	2.1	31
124	Historical changes in the food and water supply systems of the New York City Metropolitan Area. Regional Environmental Change, 2012, 12, 363-380.	2.9	30
125	The role of technology and policy in mitigating regional nitrogen pollution. Environmental Research Letters, 2011, 6, 014011.	5.2	28
126	Seasonal differences in Spartina recoverable underground reserves in the Great Sippewissett marsh in Massachusetts. Estuarine, Coastal and Shelf Science, 1987, 25, 313-319.	2.1	27

#	Article	IF	CITATIONS
127	Tidal and Groundwater Fluxes to a Shallow, Microtidal Estuary: Constraining Inputs Through Field Observations and Hydrodynamic Modeling. Estuaries and Coasts, 2012, 35, 1285-1298.	2.2	27
128	Influence of rapid rural-urban population migration on riverine nitrogen pollution: perspective from ammonia-nitrogen. Environmental Science and Pollution Research, 2017, 24, 27201-27214.	5.3	27
129	Nitrogen cycling and anthropogenic impact in the tropical interamerican seas. Biogeochemistry, 1999, 46, 163-178.	3.5	25
130	Greenhouse gas emissions from domestic hot water: heat pumps compared to most commonly used systems. Energy Science and Engineering, 2016, 4, 123-133.	4.0	25
131	Nitrogenâ€fixing cyanobacteria in the plankton of lakes and estuaries: A reply to the comment by Smith. Limnology and Oceanography, 1990, 35, 1859-1863.	3.1	24
132	Comparative Responses of Aquatic Ecosystems to Toxic Chemical Stress. , 1991, , 169-195.		24
133	Sulfate inhibition of molybdenum-dependent nitrogen fixation by planktonic cyanobacteria under sea water conditions: a non-reversible effect. , 2003, , 277-293.		22
134	Nutrient and light availability regulate the relative contribution of autotrophs and heterotrophs to respiration in freshwater pelagic ecosystems. Limnology and Oceanography, 2006, 51, 288-298.	3.1	22
135	Nitrogen Fluxes from Rivers to the Coastal Oceans. , 2008, , 1565-1587.		22
136	Sources of nitrate in rivers draining sixteen watersheds in the northeastern U.S.: Isotopic constraints. , 2002, , 171-197.		22
137	Evaluating anthropogenic N inputs to diverse lake basins: A case study of three Chinese lakes. Ambio, 2015, 44, 635-646.	5.5	21
138	The effects of grazing by the snail, Lymnaea elodes, on benthic N2 fixation and primary production in oligotrophic, arctic lakes. Limnology and Oceanography, 2007, 52, 2398-2409.	3.1	20
139	Atmospheric ammonia measurements at low concentration sites in the northeastern USA: implications for total nitrogen deposition and comparison with CMAQ estimates. Biogeochemistry, 2015, 122, 191-210.	3.5	20
140	Speciation of Dissolved Sulfur in Salt Marshes by Polarographic Methods. ACS Symposium Series, 1986, , 340-355.	0.5	19
141	Anthropogenic Phosphorus Inputs to a River Basin and Their Impacts on Phosphorus Fluxes Along Its Upstreamâ€Đownstream Continuum. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3273-3287.	3.0	19
142	Human acceleration of the nitrogen cycle: drivers, consequences, and steps toward solutions. Water Science and Technology, 2004, 49, 7-13.	2.5	18
143	Methane emissions from fossil fuels: exploring recent changes in greenhouse-gas reporting requirements for the State of New York. Journal of Integrative Environmental Sciences, 2020, 17, 69-81.	2.5	16
144	Controls of Benthic Nitrogen Fixation and Primary Production from Nutrient Enrichment of Oligotrophic, Arctic Lakes. Ecosystems, 2013, 16, 1550-1564.	3.4	15

#	ARTICLE	IF	CITATIONS
145	Nitrogen Biogeochemistry of an Urban Rooftop Farm. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	15
146	Do top-down and bottom-up controls interact to exclude nitrogen-fixing cyanobacteria from the plankton of estuaries? An exploration with a simulation model. , 1999, , 203-231.		15
147	Comparison of production-phase environmental impact metrics derived at the farm- and national-scale for United States agricultural commodities. Environmental Research Letters, 2015, 10, 114004.	5.2	14
148	A system dynamics model for managing regional N inputs from human activities. Ecological Modelling, 2016, 322, 82-91.	2.5	14
149	Wastewater and Watershed Influences on Primary Productivity and Oxygen Dynamics in the Lower Hudson River Estuary. , 2006, , 121-139.		14
150	Nitrogen and phosphorus budgets of the North Atlantic Ocean and its watershed. , 1996, , 3-25.		14
151	Biological Nitrogen Fixation Does Not Replace Nitrogen Losses After Forest Fires in the Southeastern Amazon. Ecosystems, 2020, 23, 1037-1055.	3.4	13
152	Natural atmospheric deposition of molybdenum: a global model and implications for tropical forests. Biogeochemistry, 2020, 149, 159-174.	3.5	13
153	The influence of climate on average nitrogen export from large watersheds in the Northeastern United States. , 2006, , 163-186.		13
154	Turbulence does not prevent nitrogen fixation by plankton in estuaries and coastal seas (reply to) Tj ETQq0 0 0	rgBT /Ovei 3.1	rlock 10 Tf 50
155	Title is missing!. Biogeochemistry, 1999, 46, 203-231.	3.5	12
156	Anthropogenic Perturbations to the Atmospheric Molybdenum Cycle. Global Biogeochemical Cycles, 2021, 35, e2020GB006787.	4.9	12
157	County, subregional and regional nitrogen data derived from the Net Anthropogenic Nitrogen Inputs (NANI) toolbox. Data in Brief, 2018, 18, 1877-1888.	1.0	11
158	Nitrogen cycling and anthropogenic impact in the tropical interamerican seas. , 1999, , 163-178.		11
159	Reply to comment on "How Green is Blue Hydrogen?― Energy Science and Engineering, 2022, 10, 1955-1960.	4.0	10
160	The development of policy approaches for reducing nitrogen pollution to coastal waters of the USA. Science in China Series C: Life Sciences, 2005, 48, 791-806.	1.3	9
161	HUMAN ALTERATION OF THE GLOBAL NITROGEN CYCLE: SOURCES AND CONSEQUENCES. , 1997, 7, 737.		9
162	Molybdenum, phosphorus, and pH do not constrain nitrogen fixation in a tropical forest in the southeastern Amazon. Ecology, 2021, 102, e03211.	3.2	8

#	Article	IF	CITATIONS
163	Determining the Ecological Effects of Oil Pollution in Marine Ecosystems. , 1989, , 69-97.		8
164	Understanding Nutrient Cycling and Sediment Sources in the Upper Susquehanna River Basin. Journal of Contemporary Water Research and Education, 2008, 138, 7-14.	0.7	7
165	Where did all the nitrogen go? Fate of nitrogen inputs to large watersheds in the northeastern U.S.A , 2002, , 267-293.		7
166	NONPOINT POLLUTION OF SURFACE WATERS WITH PHOSPHORUS AND NITROGEN. , 1998, 8, 559.		7
167	The impact of accelerating land-use change on the N-Cycle of tropical aquatic ecosystems: Current conditions and projected changes. , 1999, , 109-148.		6
168	Human Health Effects of a Changing Global Nitrogen Cycle. Frontiers in Ecology and the Environment, 2003, 1, 240.	4.0	6
169	A reply to the comment by Stauffer. Limnology and Oceanography, 1991, 36, 1265-1271.	3.1	5
170	Estimating Atmospheric Nitrogen Deposition in the Northeastern United States: Relevance to Narragansett Bay. , 2008, , 47-65.		5
171	County, subregional and regional phosphorus data derived from the net anthropogenic nitrogen/phosphorus inputs (NANI/NAPI) toolbox. Data in Brief, 2019, 25, 104265.	1.0	5
172	Celebrating 100 volumes. Biogeochemistry, 2010, 100, 1-2.	3.5	4
173	Why Is Planktonic Nitrogen Fixation So Rare in Coastal Marine Ecosystems? Insights from a Cross-Systems Approach. , 2016, , 127-139.		4
174	Human activities changing the nitrogen cycle in Brazil. , 2006, , 61-89.		4
175	Atmospheric Deposition and Nitrogen Pollution in Coastal Marine Ecosystems. , 2007, , 97-116.		3
176	Nitrogen, Nitrogen Cycle. , 2001, , 377-388.		3
177	Response to comment on paper examining the feasibility of changing New York state's energy infrastructure to one derived from wind, water, and sunlight. Energy Policy, 2013, 62, 1212-1215.	8.8	2
178	Nitrogen, Nitrogen Cycle. , 2013, , 537-546.		1
179	Chapter 9 Venting and Leaking of Methane from Shale Gas Development: Response to Cathles et al , 2016, , 151-172.		1

#	Article	IF	CITATIONS
181	Celebrating Biogeochemistry: over 35 years of publication. Biogeochemistry, 2021, 154, 139-140.	3.5	Ο
182	Vulnerability and Impacts on Natural Resources. , 2012, , 52-65.		0
183	Sources of reactive nitrogen affecting ecosystems in Latin America and the Caribbean: current trends and future perspectives. , 2006, , 3-24.		0
184	The development of policy approaches for reducing nitrogen pollution to coastal waters of the USA. Science in China Series C: Life Sciences, 2005, 48 Spec No, 791-806.	1.3	0
185	Share Promising Ideas, Explore New Frontiers. , 2022, 2022, .		0