
Tong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2169696/publications.pdf Version: 2024-02-01

TONC MANC

#	Article	IF	CITATIONS
1	Gateâ€Defined Quantum Confinement in CVD 2D WS ₂ . Advanced Materials, 2022, 34, e2103907.	21.0	18
2	Optical polarization properties of (11–22) semi-polar InGaN LEDs with a wide spectral range. Scientific Reports, 2020, 10, 7191.	3.3	4
3	Influence of an InGaN superlattice pre-layer on the performance of semi-polar (11–22) green LEDs grown on silicon. Scientific Reports, 2020, 10, 12650.	3.3	4
4	Quantum Transport in Two-Dimensional WS ₂ with High-Efficiency Carrier Injection through Indium Alloy Contacts. ACS Nano, 2020, 14, 13700-13708.	14.6	26
5	Non-polar nitride single-photon sources. Journal of Optics (United Kingdom), 2020, 22, 073001.	2.2	1
6	Optical and polarization properties of nonpolar InGaN-based light-emitting diodes grown on micro-rod templates. Scientific Reports, 2019, 9, 9770.	3.3	8
7	Confocal photoluminescence investigation to identify basal stacking fault's role in the optical properties of semi-polar InGaN/GaN lighting emitting diodes. Scientific Reports, 2019, 9, 9735.	3.3	3
8	Determining GaN Nanowire Polarity and its Influence on Light Emission in the Scanning Electron Microscope. Nano Letters, 2019, 19, 3863-3870.	9.1	14
9	Ultra-Energy-Efficient Photoelectrode Using Microstriped GaN on Si. ACS Photonics, 2019, 6, 1302-1306.	6.6	4
10	Monolithically integrated white light LEDs on (11–22) semi-polar GaN templates. Scientific Reports, 2019, 9, 1383.	3.3	14
11	Monolithic multiple colour emission from InGaN grown on patterned non-polar GaN. Scientific Reports, 2019, 9, 986.	3.3	6
12	Nitride Single Photon Sources. , 2018, , .		0
13	Cathodoluminescence studies of chevron features in semi-polar (112Â ⁻ 2) InGaN/GaN multiple quantum well structures. Journal of Applied Physics, 2018, 123, .	2.5	12
14	Overgrowth and strain investigation of (11–20) non-polar GaN on patterned templates on sapphire. Scientific Reports, 2018, 8, 9898.	3.3	20
15	Polarized white light from hybrid organic/III-nitrides grating structures. Scientific Reports, 2017, 7, 39677.	3.3	10
16	Theoretical and experimental analysis of radiative recombination lifetimes in nonpolar InGaN/GaN quantum dots. Physica Status Solidi (B): Basic Research, 2017, 254, 1600675.	1.5	16
17	Optical investigation of semi-polar (11-22) AlxGa1-xN with high Al composition. Applied Physics Letters, 2017, 110, .	3.3	7
18	Highâ€ŧemperature performance of nonâ€polar (11–20) InGaN quantum dots grown by a quasiâ€ŧwoâ€ŧemperature method. Physica Status Solidi (B): Basic Research, 2017, 254, 1600724.	1.5	5

TONG WANG

#	Article	IF	CITATIONS
19	Deterministic optical polarisation in nitride quantum dots at thermoelectrically cooled temperatures. Scientific Reports, 2017, 7, 12067.	3.3	11
20	Monolithically multi-color lasing from an InGaN microdisk on a Si substrate. Scientific Reports, 2017, 7, 10086.	3.3	20
21	Direct generation of linearly polarized single photons with a deterministic axis in quantum dots. Nanophotonics, 2017, 6, 1175-1183.	6.0	11
22	Temperature-dependent fine structure splitting in InGaN quantum dots. Applied Physics Letters, 2017, 111, .	3.3	4
23	Polarisation-controlled single photon emission at high temperatures from InGaN quantum dots. Nanoscale, 2017, 9, 9421-9427.	5.6	29
24	Structure–Activity Correlations for BrĄ̃nsted Acid, Lewis Acid, and Photocatalyzed Reactions of Exfoliated Crystalline Niobium Oxides. ChemCatChem, 2017, 9, 144-154.	3.7	22
25	Highly polarized electrically driven single-photon emission from a non-polar InGaN quantum dot. Applied Physics Letters, 2017, 111, .	3.3	7
26	Effect of an ITO current spreading layer on the performance of InGaN MQW solar cells. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 297-300.	0.8	3
27	Ultrafast, Polarized, Single-Photon Emission from m-Plane InGaN Quantum Dots on GaN Nanowires. Nano Letters, 2016, 16, 7779-7785.	9.1	26
28	Semi-polar InGaN/GaN based long emission wavelength emitter for lighting and displays. , 2016, , .		0
29	Development of III-nitride nanostructures for low threshold lasing and semipolar GaN towards Yellow/Orange lasing. , 2016, , .		Ο
30	Study of highâ€quality (11â^'22) semiâ€polar GaN grown on nanorod templates. Physica Status Solidi (B): Basic Research, 2015, 252, 1079-1083.	1.5	3
31	Room temperature plasmonic lasing in a continuous wave operation mode from an InGaN/GaN single nanorod with a low threshold. Scientific Reports, 2015, 4, 5014.	3.3	42
32	Optically pumped whispering-gallery mode lasing from 2- <i>μ</i> m GaN micro-disks pivoted on Si. Applied Physics Letters, 2014, 104, .	3.3	40
33	Efficiency enhancement of InGaN/GaN solar cells with nanostructures. Applied Physics Letters, 2014, 104, .	3.3	23
34	Room temperature continuous–wave green lasing from an InGaN microdisk on silicon. Scientific Reports, 2014, 4, 7250.	3.3	48
35	Lattice resolved annular dark-field scanning transmission electron microscopy of (Al,Âln)GaN/GaN layers for measuring segregation with sub-monolayer precision. Journal of Materials Science, 2013, 48, 2883-2892.	3.7	16
36	Efficient reduction of defects in (11 <u>2</u> 0) non-polar and (11 <u>2</u> 2) semi-polar GaN grown on nanorod templates. Applied Physics Letters, 2013, 102, .	3.3	15

TONG WANG

#	Article	IF	CITATIONS
37	Characterization of InGaN-based nanorod light emitting diodes with different indium compositions. Journal of Applied Physics, 2012, 111, .	2.5	61
38	Greatly enhanced performance of InGaN/GaN nanorod light emitting diodes. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 477-480.	1.8	29
39	Greatly improved crystal quality of non-polar GaN grown on a-plane GaN nano-rod template obtained using self-organised nano-masks. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 564-567.	0.8	3
40	Investigation of the optical properties of InGaN/GaN nanorods with different indium composition. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 620-623.	0.8	3
41	Optical gain in AlGaN/AlGaN multiple quantum wells grown on high temperature AlN multiple buffers. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2056-2058.	0.8	1
42	The origin of the high ideality factor in AlGaN-based quantum well ultraviolet light emitting diodes. Physica Status Solidi (B): Basic Research, 2010, 247, 1761-1763.	1.5	30
43	Characterization of gate recessed GaN/AlGaN/GaN high electron mobility transistors fabricated using a SiCl4/SF6 dry etch recipe. Journal of Applied Physics, 2010, 108, 013711.	2.5	9
44	Optically pumped ultraviolet lasing from nitride nanopillars at room temperature. Applied Physics Letters, 2010, 96, .	3.3	51
45	Influence of the GaN barrier thickness on the optical properties of InGaN/GaN multilayer quantum dot heterostructures. Applied Physics Letters, 2010, 96, 251904.	3.3	17
46	Influence of crystal quality of underlying GaN buffer on the formation and optical properties of InGaN/GaN quantum dots. Applied Physics Letters, 2009, 95, 101909.	3.3	11
47	Optical and microstructural study of a single layer of InGaN quantum dots. Journal of Applied Physics, 2009, 105, 053505.	2.5	25
48	MOCVD growth and optical study of InGaN quantum dots and their emitters on a high quality GaN layer grown using a high temperature AlN as buffer. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S582-S585.	0.8	0
49	Growth and optical investigation of self-assembled InGaN quantum dots on a GaN surface using a high temperature AlN buffer. Journal of Applied Physics, 2008, 103, 123522.	2.5	41
50	Influence of annealing temperature on optical properties of InGaN quantum dot based light emitting diodes. Applied Physics Letters, 2008, 93, .	3.3	21
51	GaN hybrid microcavities in the strong coupling regime grown by metal-organic chemical vapor deposition on sapphire substrates. Journal of Applied Physics, 2007, 101, 093110.	2.5	20
52	Two coexisting mechanisms of dislocation reduction in an AlGaN layer grown using a thin GaN interlayer. Applied Physics Letters, 2007, 91, 131903.	3.3	16
53	Improved AlN buffer layer technologies for UV-LEDs. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 120-124.	0.8	1
54	Investigations on Electrode-Less Wet Etching of GaN Using Continuous Ultraviolet Illumination. Journal of Electronic Materials, 2007, 36, 397-402.	2.2	14

TONG WANG

#	Article	IF	CITATIONS
55	The influence of acceptor anneal temperature on the performance of InGaN/GaN quantum well light-emitting diodes. Journal of Applied Physics, 2006, 99, 024507.	2.5	6
56	Optical properties of AlGaNâ^•GaN multiple quantum well structure by using a high-temperature AlN buffer on sapphire substrate. Journal of Applied Physics, 2006, 99, 023513.	2.5	27
57	The role of vacancies in the red luminescence from Mg-doped GaN. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1919-1922.	0.8	11
58	The magnesium acceptor states in GaN: an investigation by optically-detected magnetic resonance. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1892-1896.	0.8	0
59	Effects of depletion on the emission from individual InGaN dots. Applied Physics Letters, 2006, 88, 122115.	3.3	3
60	Origin of the red luminescence in Mg-doped GaN. Applied Physics Letters, 2006, 89, 022107.	3.3	28
61	Mechanisms of dislocation reduction in an Al0.98Ga0.02N layer grown using a porous AlN buffer. Applied Physics Letters, 2006, 89, 131925.	3.3	17
62	AlGaN-based Bragg mirrors and hybrid microcavities for the ultra-violet spectral region. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 813-816.	0.8	8
63	Carrier capture times in InGaN/GaN multiple quantum wells. Physica Status Solidi (B): Basic Research, 2003, 240, 364-367.	1.5	10
64	Compositional analysis of AlInGaN quaternary layers grown by metalorganic vapour phase epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2478-2481.	0.8	9
65	Crack formation and development in AlGaN/GaN structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2055-2058.	0.8	7
66	Electron-beam-induced segregation in InGaN/GaN multiple-quantum wells. Applied Physics Letters, 2003, 83, 1965-1967.	3.3	70
67	Characterisation of ultra-shallow junctions using advanced SIMS, SRP and HRTEM techniques. , 0, , .		5