Yonatan Calahorra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2169603/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Piezoelectric III-V and II-VI Semiconductors. , 2022, , 35-49.		1
2	Enhanced piezoelectricity and electromechanical efficiency in semiconducting GaN due to nanoscale porosity. Applied Materials Today, 2020, 21, 100858.	4.3	10
3	Time-resolved open-circuit conductive atomic force microscopy for direct electromechanical characterisation. Nanotechnology, 2020, 31, 404003.	2.6	11
4	Poly- <scp>l</scp> -Lactic Acid Nanotubes as Soft Piezoelectric Interfaces for Biology: Controlling Cell Attachment <i>via</i> Polymer Crystallinity. ACS Applied Bio Materials, 2020, 3, 2140-2149.	4.6	27
5	Preface for the special issue on Microscopy of Semiconducting Materials 2019. Semiconductor Science and Technology, 2020, 35, 120201.	2.0	1
6	Self-assembly of collagen bundles and enhanced piezoelectricity induced by chemical crosslinking. Nanoscale, 2019, 11, 15120-15130.	5.6	33
7	Strain-Mediated Bending of InP Nanowires through the Growth of an Asymmetric InAs Shell. Nanomaterials, 2019, 9, 1327.	4.1	8
8	Highly sensitive piezotronic pressure sensors based on undoped GaAs nanowire ensembles. Journal Physics D: Applied Physics, 2019, 52, 294002.	2.8	15
9	Coaxial Nickel–Poly(vinylidene fluoride trifluoroethylene) Nanowires for Magnetoelectric Applications. ACS Applied Nano Materials, 2019, 2, 170-179.	5.0	10
10	Piezoelectricity in non-nitride III–V nanowires: Challenges and opportunities. Journal of Materials Research, 2018, 33, 611-624.	2.6	10
11	Nanoscale electromechanical properties of template-assisted hierarchical self-assembled cellulose nanofibers. Nanoscale, 2018, 10, 16812-16821.	5.6	21
12	The effect of crystal structure on the electromechanical properties of piezoelectric Nylon-11 nanowires. Chemical Communications, 2018, 54, 6863-6866.	4.1	20
13	Piezoelectric Semiconducting Nanowires. Semiconductors and Semimetals, 2018, , 445-478.	0.7	6
14	Catalyst shape engineering for anisotropic cross-sectioned nanowire growth. Scientific Reports, 2017, 7, 40891.	3.3	10
15	Direct observation of shear piezoelectricity in poly- <scp>l</scp> -lactic acid nanowires. APL Materials, 2017, 5, .	5.1	44
16	Leadâ€Free Polycrystalline Ferroelectric Nanowires with Enhanced Curie Temperature. Advanced Functional Materials, 2017, 27, 1701169.	14.9	19
17	Formation mechanism of gold-based and gold-free ohmic contacts to AlGaN/GaN heterostructure field effect transistors. Journal of Applied Physics, 2017, 121, .	2.5	28
18	Exploring piezoelectric properties of Ill–V nanowires using piezo-response force microscopy. Semiconductor Science and Technology, 2017, 32, 074006.	2.0	18

YONATAN CALAHORRA

#	Article	IF	CITATIONS
19	Mapping piezoelectric response in nanomaterials using a dedicated non-destructive scanning probe technique. Nanoscale, 2017, 9, 19290-19297.	5.6	23
20	Localized electromechanical interactions in ferroelectric P(VDF-TrFE) nanowires investigated by scanning probe microscopy. APL Materials, 2016, 4, .	5.1	17
21	InP Nanoflag Growth from a Nanowire Template by in Situ Catalyst Manipulation. Nano Letters, 2016, 16, 2837-2844.	9.1	32
22	Observation of Confinementâ€Induced Selfâ€Poling Effects in Ferroelectric Polymer Nanowires Grown by Template Wetting. Macromolecular Materials and Engineering, 2016, 301, 1016-1025.	3.6	32
23	Reduction of nanowire diameter beyond lithography limits by controlled catalyst dewetting. Journal Physics D: Applied Physics, 2016, 49, 165309.	2.8	3
24	Three-point bending analysis of doubly clamped silicon nanowire beams; Young's modulus, initial stress, and crystal orientation. Journal of Applied Physics, 2015, 117, 164311.	2.5	13
25	On the diameter dependence of metal-nanowire Schottky barrier height. Journal of Applied Physics, 2015, 117, 034308.	2.5	16
26	Control of morphology and crystal purity of InP nanowires by variation of phosphine flux during selective area MOMBE. Nanotechnology, 2015, 26, 085303.	2.6	29
27	Young's Modulus, Residual Stress, and Crystal Orientation of Doubly Clamped Silicon Nanowire Beams. Nano Letters, 2015, 15, 2945-2950.	9.1	97
28	Role of Transport During Transient Phenomena in AlGaN/GaN Heterostructure FETs. IEEE Electron Device Letters, 2015, 36, 1124-1127.	3.9	8
29	Rigorous analysis of image force barrier lowering in bounded geometries: application to semiconducting nanowires. Nanotechnology, 2014, 25, 145203.	2.6	6
30	Tapering and crystal structure of indium phosphide nanowires grown by selective area vapor liquid solid epitaxy. Journal of Crystal Growth, 2014, 389, 103-107.	1.5	14
31	Shadowing and mask opening effects during selective-area vapor–liquid–solid growth of InP nanowires by metalorganic molecular beam epitaxy. Nanotechnology, 2013, 24, 475302.	2.6	30
32	Surface depletion effects in semiconducting nanowires having a non-uniform radial doping profile. Journal of Applied Physics, 2013, 114, 124310.	2.5	13
33	Catalyst design for native oxide based selective area InP nanowire growth. , 2012, , .		1
34	Native-oxide-based selective area growth of InP nanowires via metal–organic molecular beam epitaxy mediated by surface diffusion. Nanotechnology, 2012, 23, 245603.	2.6	10