Tao Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2169406/publications.pdf

Version: 2024-02-01

125	12,907	55	106
papers	citations	h-index	g-index
133	133	133	15920
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mass spectrometryâ€based targeted proteomics for analysis of protein mutations. Mass Spectrometry Reviews, 2023, 42, 796-821.	2.8	19
2	Evaluation of Differential Peptide Loading on Tandem Mass Tag-Based Proteomic and Phosphoproteomic Data Quality. Journal of the American Society for Mass Spectrometry, 2022, 33, 17-30.	1.2	2
3	Capecitabine Regulates HSP90AB1 Expression and Induces Apoptosis via Akt/SMARCC1/AP-1/ROS Axis in T Cells. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-15.	1.9	1
4	Determining protein polarization proteome-wide using physical dissection of individual Stentor coeruleus cells. Current Biology, 2022, , .	1.8	4
5	Internal Standard Triggered-Parallel Reaction Monitoring Mass Spectrometry Enables Multiplexed Quantification of Candidate Biomarkers in Plasma. Analytical Chemistry, 2022, 94, 9540-9547.	3.2	11
6	Mass Spectrometry-Based for Analysis of. Methods in Molecular Biology, 2021, 2259, 247-257.	0.4	O
7	Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma. Cancer Cell, 2021, 39, 361-379.e16.	7.7	189
8	Surfactant-assisted one-pot sample preparation for label-free single-cell proteomics. Communications Biology, 2021, 4, 265.	2.0	46
9	Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell, 2021, 39, 509-528.e20.	7.7	327
10	The AML microenvironment catalyzes a stepwise evolution to gilteritinib resistance. Cancer Cell, 2021, 39, 999-1014.e8.	7.7	62
11	A proteogenomic portrait of lung squamous cell carcinoma. Cell, 2021, 184, 4348-4371.e40.	13.5	170
12	Facile One-Pot Nanoproteomics for Label-Free Proteome Profiling of 50–1000 Mammalian Cells. Journal of Proteome Research, 2021, 20, 4452-4461.	1.8	12
13	Proteogenomic characterization of pancreatic ductal adenocarcinoma. Cell, 2021, 184, 5031-5052.e26.	13.5	236
14	Pan-cancer proteogenomic investigations identify post-transcriptional kinase targets. Communications Biology, 2021, 4, 1112.	2.0	5
15	Evaluating the Performance of 193 nm Ultraviolet Photodissociation for Tandem Mass Tag Labeled Peptides. Analytica—A Journal of Analytical Chemistry and Chemical Analysis, 2021, 2, 140-155.	0.8	3
16	High-throughput and high-efficiency sample preparation for single-cell proteomics using a nested nanowell chip. Nature Communications, 2021, 12, 6246.	5.8	76
17	Deep-Learning-Derived Evaluation Metrics Enable Effective Benchmarking of Computational Tools for Phosphopeptide Identification. Molecular and Cellular Proteomics, 2021, 20, 100171.	2.5	9
18	Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy. Cell, 2020, 183, 1436-1456.e31.	13.5	273

#	Article	IF	CITATIONS
19	Integrated Proteogenomic Characterization across Major Histological Types of Pediatric Brain Cancer. Cell, 2020, 183, 1962-1985.e31.	13.5	177
20	Integrated Proteomic and Glycoproteomic Characterization of Human High-Grade Serous Ovarian Carcinoma. Cell Reports, 2020, 33, 108276.	2.9	83
21	Proteomic Analysis of Exosomes for Discovery of Protein Biomarkers for Prostate and Bladder Cancer. Cancers, 2020, 12, 2335.	1.7	44
22	Proteomic Tissue-Based Classifier for Early Prediction of Prostate Cancer Progression. Cancers, 2020, 12, 1268.	1.7	8
23	Detection of Head and Neck Cancer Based on Longitudinal Changes in Serum Protein Abundance. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1665-1672.	1.1	16
24	Automated Coupling of Nanodroplet Sample Preparation with Liquid Chromatography–Mass Spectrometry for High-Throughput Single-Cell Proteomics. Analytical Chemistry, 2020, 92, 10588-10596.	3.2	105
25	Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma. Cell, 2020, 182, 200-225.e35.	13.5	410
26	Proteogenomic Characterization of Endometrial Carcinoma. Cell, 2020, 180, 729-748.e26.	13.5	296
27	An Improved Boosting to Amplify Signal with Isobaric Labeling (iBASIL) Strategy for Precise Quantitative Single-cell Proteomics. Molecular and Cellular Proteomics, 2020, 19, 828-838.	2.5	121
28	Proteogenomic Characterization of Ovarian HGSC Implicates Mitotic Kinases, Replication Stress in Observed Chromosomal Instability. Cell Reports Medicine, 2020, 1, 100004.	3.3	46
29	Carrier-assisted One-pot Sample Preparation for Targeted Proteomics Analysis of Small Numbers of Human Cells. Journal of Visualized Experiments, 2020, , .	0.2	3
30	Human adipose tissue- and umbilical cord-derived stem cells: which is a better alternative to treat spinal cord injury?. Neural Regeneration Research, 2020, 15, 2306.	1.6	15
31	Tandem Mass Tag Labeling Facilitates Reversed-Phase Liquid Chromatography-Mass Spectrometry Analysis of Hydrophilic Phosphopeptides. Analytical Chemistry, 2019, 91, 11606-11613.	3.2	22
32	Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma. Cell, 2019, 179, 964-983.e31.	13.5	430
33	High-Throughput Single Cell Proteomics Enabled by Multiplex Isobaric Labeling in a Nanodroplet Sample Preparation Platform. Analytical Chemistry, 2019, 91, 13119-13127.	3.2	156
34	Regulated Phosphosignaling Associated with Breast Cancer Subtypes and Druggability*. Molecular and Cellular Proteomics, 2019, 18, 1630-1650.	2.5	14
35	An Integrative Analysis of Tumor Proteomic and Phosphoproteomic Profiles to Examine the Relationships Between Kinase Activity and Phosphorylation. Molecular and Cellular Proteomics, 2019, 18, S26-S36.	2.5	25
36	Automated Nanoflow Two-Dimensional Reversed-Phase Liquid Chromatography System Enables In-Depth Proteome and Phosphoproteome Profiling of Nanoscale Samples. Analytical Chemistry, 2019, 91, 9707-9715.	3.2	36

#	Article	IF	CITATIONS
37	Phosphoproteome Analysis Reveals Estrogen-ER Pathway as a Modulator of mTOR Activity Via DEPTOR. Molecular and Cellular Proteomics, 2019, 18, 1607-1618.	2.5	18
38	Proteogenomic Analysis of Human Colon Cancer Reveals New Therapeutic Opportunities. Cell, 2019, 177, 1035-1049.e19.	13.5	498
39	Boosting to Amplify Signal with Isobaric Labeling (BASIL) Strategy for Comprehensive Quantitative Phosphoproteomic Characterization of Small Populations of Cells. Analytical Chemistry, 2019, 91, 5794-5801.	3.2	86
40	Carrier-Assisted Single-Tube Processing Approach for Targeted Proteomics Analysis of Low Numbers of Mammalian Cells. Analytical Chemistry, 2019, 91, 1441-1451.	3.2	24
41	Preconditioning in the Rhesus Macaque Induces a Proteomic Signature Following Cerebral Ischemia that Is Associated with Neuroprotection. Translational Stroke Research, 2019, 10, 440-448.	2.3	11
42	iTRAQ-based quantitative proteomics reveals the neuroprotection of rhubarb in experimental intracerebral hemorrhage. Journal of Ethnopharmacology, 2019, 232, 244-254.	2.0	25
43	Rapidly Assessing the Quality of Targeted Proteomics Experiments through Monitoring Stable-Isotope Labeled Standards. Journal of Proteome Research, 2019, 18, 694-699.	1.8	11
44	Inhibition of interleukin-1 receptor-associated kinase-1 is a therapeutic strategy for acute myeloid leukemia subtypes. Leukemia, 2018, 32, 2374-2387.	3.3	43
45	Targeted Quantification of Phosphorylation Dynamics in the Context of EGFR-MAPK Pathway. Analytical Chemistry, 2018, 90, 5256-5263.	3.2	39
46	Towards Discovery and Targeted Peptide Biomarker Detection Using nanoESI-TIMS-TOF MS. Journal of the American Society for Mass Spectrometry, 2018, 29, 817-826.	1.2	31
47	Quantitative proteomic analysis of intracerebral hemorrhage in rats with a focus on brain energy metabolism. Brain and Behavior, 2018, 8, e01130.	1.0	19
48	Characterization of the Ovarian Tumor Peptidome. Vitamins and Hormones, 2018, 107, 515-531.	0.7	5
49	Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography–mass spectrometry. Nature Protocols, 2018, 13, 1632-1661.	5.5	377
50	Improved Sensitivity and Separations for Phosphopeptides using Online Liquid Chromotography Coupled with Structures for Lossless Ion Manipulations Ion Mobility–Mass Spectrometry. Analytical Chemistry, 2018, 90, 10889-10896.	3.2	38
51	Residual tissue repositories as a resource for population-based cancer proteomic studies. Clinical Proteomics, 2018, 15, 26.	1.1	32
52	Facile carrier-assisted targeted mass spectrometric approach for proteomic analysis of low numbers of mammalian cells. Communications Biology, 2018, 1, 103.	2.0	21
53	Deep-Dive Targeted Quantification for Ultrasensitive Analysis of Proteins in Nondepleted Human Blood Plasma/Serum and Tissues. Analytical Chemistry, 2017, 89, 9139-9146.	3.2	21
54	Targeted proteomic assays for quantitation of proteins identified by proteogenomic analysis of ovarian cancer. Scientific Data, 2017, 4, 170091.	2.4	29

#	Article	IF	CITATIONS
55	Informed-Proteomics: open-source software package for top-down proteomics. Nature Methods, 2017, 14, 909-914.	9.0	126
56	Quality Assessments of Long-Term Quantitative Proteomic Analysis of Breast Cancer Xenograft Tissues. Journal of Proteome Research, 2017, 16, 4523-4530.	1.8	17
57	Quantitative proteomics identifies altered Oâ€GlcNAcylation of structural, synaptic and memoryâ€associated proteins in Alzheimer's disease. Journal of Pathology, 2017, 243, 78-88.	2.1	105
58	Quantification of mutant SPOP proteins in prostate cancer using mass spectrometry-based targeted proteomics. Journal of Translational Medicine, 2017, 15, 175.	1.8	5
59	Multiplexed targeted mass spectrometry assays for prostate cancer-associated urinary proteins. Oncotarget, 2017, 8, 101887-101898.	0.8	14
60	Advances in targeted proteomics and applications to biomedical research. Proteomics, 2016, 16, 2160-2182.	1.3	175
61	Simultaneous Proteomic Discovery and Targeted Monitoring using Liquid Chromatography, Ion Mobility Spectrometry, and Mass Spectrometry. Molecular and Cellular Proteomics, 2016, 15, 3694-3705.	2.5	29
62	Integrated Proteogenomic Characterization of Human High-Grade Serous Ovarian Cancer. Cell, 2016, 166, 755-765.	13.5	804
63	Contributions of immunoaffinity chromatography to deep proteome profiling of human biofluids. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1021, 57-68.	1.2	47
64	An Analysis of the Sensitivity of Proteogenomic Mapping of Somatic Mutations and Novel Splicing Events in Cancer. Molecular and Cellular Proteomics, 2016, 15, 1060-1071.	2.5	104
65	Reproducibility of Differential Proteomic Technologies in CPTAC Fractionated Xenografts. Journal of Proteome Research, 2016, 15, 691-706.	1.8	44
66	The clinical impact of recent advances in LC-MS for cancer biomarker discovery and verification. Expert Review of Proteomics, 2016, 13, 99-114.	1.3	50
67	Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC–MS/MS. Methods in Molecular Biology, 2016, 1410, 237-247.	0.4	10
68	An Optimized Informatics Pipeline for Mass Spectrometry-Based Peptidomics. Journal of the American Society for Mass Spectrometry, 2015, 26, 2002-2008.	1.2	10
69	Sensitive Targeted Quantification of ERK Phosphorylation Dynamics and Stoichiometry in Human Cells without Affinity Enrichment. Analytical Chemistry, 2015, 87, 1103-1110.	3.2	32
70	Analytical platform evaluation for quantification of ERG in prostate cancer using protein and mRNA detection methods. Journal of Translational Medicine, 2015, 13, 54.	1.8	23
71	Mass Spectrometry for Biomarker Development. Biomarkers in Disease, 2015, , 17-48.	0.0	1
72	Systematic Optimization of Long Gradient Chromatography Mass Spectrometry for Deep Analysis of Brain Proteome. Journal of Proteome Research, 2015, 14, 829-838.	1.8	71

#	Article	lF	Citations
73	Comprehensive Quantitative Analysis of Ovarian and Breast Cancer Tumor Peptidomes. Journal of Proteome Research, 2015, 14, 422-433.	1.8	26
74	Proteomic approaches for site-specific <i>O</i> -GlcNAcylation analysis. Bioanalysis, 2014, 6, 2571-2580.	0.6	13
75	Proteogenomic strategies for identification of aberrant cancer peptides using largeâ€scale nextâ€generation sequencing data. Proteomics, 2014, 14, 2719-2730.	1.3	62
76	Antibodyâ€independent targeted quantification of TMPRSS2â€ERG fusion protein products in prostate cancer. Molecular Oncology, 2014, 8, 1169-1180.	2.1	24
77	A Highly Sensitive Targeted Mass Spectrometric Assay for Quantification of AGR2 Protein in Human Urine and Serum. Journal of Proteome Research, 2014, 13, 875-882.	1.8	59
78	Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications. Nature Protocols, 2014, 9, 64-75.	5.5	131
79	Microscale depletion of high abundance proteins in human biofluids using IgY14 immunoaffinity resin: analysis of human plasma and cerebrospinal fluid. Analytical and Bioanalytical Chemistry, 2014, 406, 7117-7125.	1.9	10
80	Expediting SRM Assay Development for Large-Scale Targeted Proteomics Experiments. Journal of Proteome Research, 2014, 13, 4479-4487.	1.8	29
81	Ischemia in Tumors Induces Early and Sustained Phosphorylation Changes in Stress Kinase Pathways but Does Not Affect Global Protein Levels. Molecular and Cellular Proteomics, 2014, 13, 1690-1704.	2.5	323
82	Mass Spectrometry for Biomarker Development. , 2014, , 1-25.		0
83	Long-Gradient Separations Coupled with Selected Reaction Monitoring for Highly Sensitive, Large Scale Targeted Protein Quantification in a Single Analysis. Analytical Chemistry, 2013, 85, 9196-9203.	3.2	41
84	Targeted Quantification of Low ng/mL Level Proteins in Human Serum without Immunoaffinity Depletion. Journal of Proteome Research, 2013, 12, 3353-3361.	1.8	68
85	Determination of Burn Patient Outcome by Large-Scale Quantitative Discovery Proteomics. Critical Care Medicine, 2013, 41, 1421-1434.	0.4	55
86	Gray Matter Is Targeted in First-Attack Multiple Sclerosis. PLoS ONE, 2013, 8, e66117.	1.1	36
87	Antibody-free, targeted mass-spectrometric approach for quantification of proteins at low picogram per milliliter levels in human plasma/serum. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15395-15400.	3.3	211
88	A Systematic Analysis of a Deep Mouse Epididymal Sperm Proteome 1. Biology of Reproduction, 2012, 87, 141.	1.2	41
89	Mass spectrometry for translational proteomics: progress and clinical implications. Genome Medicine, 2012, 4, 63.	3.6	71
90	Analysis of serum total and free PSA using immunoaffinity depletion coupled to SRM: correlation with clinical immunoassay tests. Journal of Proteomics, 2012, 75, 4747-4757.	1.2	43

#	Article	IF	Citations
91	Mapping N-Linked Glycosylation Sites in the Secretome and Whole Cells of <i>Aspergillus niger</i> Using Hydrazide Chemistry and Mass Spectrometry. Journal of Proteome Research, 2012, 11, 143-156.	1.8	62
92	Simple Sodium Dodecyl Sulfate-Assisted Sample Preparation Method for LC-MS-Based Proteomics Applications. Analytical Chemistry, 2012, 84, 2862-2867.	3.2	74
93	Advancing the sensitivity of selected reaction monitoringâ€based targeted quantitative proteomics. Proteomics, 2012, 12, 1074-1092.	1.3	186
94	Network Analysis of Epidermal Growth Factor Signaling Using Integrated Genomic, Proteomic and Phosphorylation Data. PLoS ONE, 2012, 7, e34515.	1.1	37
95	Liquid Chromatography-Mass Spectrometry-based Quantitative Proteomics. Journal of Biological Chemistry, 2011, 286, 25443-25449.	1.6	171
96	Proteome and transcriptome profiles of a Her2/Neuâ€driven mouse model of breast cancer. Proteomics - Clinical Applications, 2011, 5, 179-188.	0.8	12
97	Reversedâ€phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics, 2011, 11, 2019-2026.	1.3	564
98	Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size. Proteomics, 2011, 11, 4569-4577.	1.3	135
99	180-Labeled Proteome Reference as Global Internal Standards for Targeted Quantification by Selected Reaction Monitoring-Mass Spectrometry. Molecular and Cellular Proteomics, 2011, 10, M110.007302.	2.5	17
100	Enhanced Sensitivity for Selected Reaction Monitoring Mass Spectrometry-based Targeted Proteomics Using a Dual Stage Electrodynamic Ion Funnel Interface. Molecular and Cellular Proteomics, 2011, 10, S1-S9.	2.5	49
101	Distinct Cerebrospinal Fluid Proteomes Differentiate Post-Treatment Lyme Disease from Chronic Fatigue Syndrome. PLoS ONE, 2011, 6, e17287.	1.1	103
102	Strategy for Degradomic-Peptidomic Analysis of Human Blood Plasma. Journal of Proteome Research, 2010, 9, 2339-2346.	1.8	43
103	Establishing the Proteome of Normal Human Cerebrospinal Fluid. PLoS ONE, 2010, 5, e10980.	1.1	183
104	Blood Peptidome-Degradome Profile of Breast Cancer. PLoS ONE, 2010, 5, e13133.	1.1	54
105	Large-Scale Multiplexed Quantitative Discovery Proteomics Enabled by the Use of an 18O-Labeled "Universal―Reference Sample. Journal of Proteome Research, 2009, 8, 290-299.	1.8	59
106	Investigating the correspondence between transcriptomic and proteomic expression profiles using coupled cluster models. Bioinformatics, 2008, 24, 2894-2900.	1.8	117
107	Spatial mapping of the neurite and soma proteomes reveals a functional Cdc42/Rac regulatory network. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1931-1936.	3.3	73
108	Enhanced Detection of Low Abundance Human Plasma Proteins Using a Tandem IgY12-SuperMix Immunoaffinity Separation Strategy. Molecular and Cellular Proteomics, 2008, 7, 1963-1973.	2.5	183

#	Article	IF	CITATIONS
109	Quantitative Analysis of Human Immunodeficiency Virus Type 1-Infected CD4 + Cell Proteome: Dysregulated Cell Cycle Progression and Nuclear Transport Coincide with Robust Virus Production. Journal of Virology, 2007, 81, 7571-7583.	1.5	84
110	Accurate Mass Measurements in Proteomics. Chemical Reviews, 2007, 107, 3621-3653.	23.0	102
111	Head-to-Head Comparison of Serum Fractionation Techniques. Journal of Proteome Research, 2007, 6, 828-836.	1.8	152
112	The Use of a Quantitative Cysteinyl-Peptide Enrichment Technology for High-Throughput Quantitative Proteomics. Methods in Molecular Biology, 2007, 359, 107-124.	0.4	16
113	Characterization of the Mouse Brain Proteome Using Global Proteomic Analysis Complemented with Cysteinyl-Peptide Enrichment. Journal of Proteome Research, 2006, 5, 361-369.	1.8	126
114	Evaluation of Multiprotein Immunoaffinity Subtraction for Plasma Proteomics and Candidate Biomarker Discovery Using Mass Spectrometry. Molecular and Cellular Proteomics, 2006, 5, 2167-2174.	2.5	197
115	Advances and Challenges in Liquid Chromatography-Mass Spectrometry-based Proteomics Profiling for Clinical Applications. Molecular and Cellular Proteomics, 2006, 5, 1727-1744.	2.5	309
116	High Dynamic Range Characterization of the Trauma Patient Plasma Proteome. Molecular and Cellular Proteomics, 2006, 5, 1899-1913.	2.5	142
117	Improved proteome coverage by using high efficiency cysteinyl peptide enrichment: The human mammary epithelial cell proteome. Proteomics, 2005, 5, 1263-1273.	1.3	65
118	Quantitative Proteome Analysis of Human Plasma following in Vivo Lipopolysaccharide Administration Using $16O/18O$ Labeling and the Accurate Mass and Time Tag Approach. Molecular and Cellular Proteomics, 2005, 4, 700-709.	2.5	156
119	Utilizing Human Blood Plasma for Proteomic Biomarker Discoveryâ€. Journal of Proteome Research, 2005, 4, 1073-1085.	1.8	288
120	Probability-Based Evaluation of Peptide and Protein Identifications from Tandem Mass Spectrometry and SEQUEST Analysis:Â The Human Proteome. Journal of Proteome Research, 2005, 4, 53-62.	1.8	320
121	Human PlasmaN-Glycoproteome Analysis by Immunoaffinity Subtraction, Hydrazide Chemistry, and Mass Spectrometry. Journal of Proteome Research, 2005, 4, 2070-2080.	1.8	394
122	High-Throughput Comparative Proteome Analysis Using a Quantitative Cysteinyl-peptide Enrichment Technology. Analytical Chemistry, 2004, 76, 5345-5353.	3.2	142
123	Capillary Electrophoresisâ^Electrospray Mass Spectrometry for the Characterization of High-Mannose-Type N-Glycosylation and Differential Oxidation in Glycoproteins by Charge Reversal and Protease/Glycosidase Digestion. Analytical Chemistry, 2001, 73, 5875-5885.	3.2	43
124	Analysis of recombinant and modified proteins by capillary zone electrophoresis coupled with electrospray ionization tandem mass spectrometry. Journal of Chromatography A, 1999, 855, 695-707.	1.8	16
125	Application of free-flow electrophoresis to the purification of trichosanthin from a crude product of acetone fractional precipitation. Electrophoresis, 1998, 19, 1097-1103.	1.3	11