Xu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2169282/publications.pdf

Version: 2024-02-01

394421 501196 3,521 27 19 28 h-index citations g-index papers 29 29 29 6297 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Inverse Solidification Induced by Active Janus Particles. Advanced Functional Materials, 2020, 30, 2003851.	14.9	19
2	Untethered and ultrafast soft-bodied robots. Communications Materials, 2020, 1, .	6.9	86
3	Janus Particles: Inverse Solidification Induced by Active Janus Particles (Adv. Funct. Mater. 39/2020). Advanced Functional Materials, 2020, 30, 2070260.	14.9	1
4	Anisotropic Exclusion Effect between Photocatalytic Ag/AgCl Janus Particles and Passive Beads in a Dense Colloidal Matrix. Langmuir, 2020, 36, 7091-7099.	3.5	17
5	A bimodal soft electronic skin for tactile and touchless interaction in real time. Nature Communications, 2019, 10, 4405.	12.8	188
6	Multilayer Polypyrrole Nanosheets with Selfâ€Organized Surface Structures for Flexible and Efficient Solar–Thermal Energy Conversion. Advanced Materials, 2019, 31, e1807716.	21.0	341
7	Fuelâ€Free Nanocapâ€Like Motors Actuated Under Visible Light. Advanced Functional Materials, 2018, 28, 1705862.	14.9	52
8	Graphene-templated synthesis of sandwich-like porous carbon nanosheets for efficient oxygen reduction reaction in both alkaline and acidic media. Science China Materials, 2018, 61, 915-925.	6.3	17
9	Ultrathin Polypyrrole Nanosheets via Space-Confined Synthesis for Efficient Photothermal Therapy in the Second Near-Infrared Window. Nano Letters, 2018, 18, 2217-2225.	9.1	215
10	Janus Micromotors: Highâ€Motility Visible Lightâ€Ðriven Ag/AgCl Janus Micromotors (Small 48/2018). Small, 2018, 14, 1870229.	10.0	0
11	Highâ€Motility Visible Lightâ€Driven Ag/AgCl Janus Micromotors. Small, 2018, 14, e1803613.	10.0	56
12	Visible Light Actuated Efficient Exclusion Between Plasmonic Ag/AgCl Micromotors and Passive Beads. Small, 2018, 14, e1802537.	10.0	35
13	Janus Micromotors: Visible Light Actuated Efficient Exclusion Between Plasmonic Ag/AgCl Micromotors and Passive Beads (Small 44/2018). Small, 2018, 14, 1870203.	10.0	1
14	Pt Single Atoms Embedded in the Surface of Ni Nanocrystals as Highly Active Catalysts for Selective Hydrogenation of Nitro Compounds. Nano Letters, 2018, 18, 3785-3791.	9.1	127
15	Selective co-production of acetate and methane from wastewater during mesophilic anaerobic fermentation under acidic conditions. Environmental Science: Water Research and Technology, 2017, 3, 720-725.	2.4	5
16	Novel Iron/Cobaltâ€Containing Polypyrrole Hydrogelâ€Derived Trifunctional Electrocatalyst for Selfâ€Powered Overall Water Splitting. Advanced Functional Materials, 2017, 27, 1606497.	14.9	320
17	Cobalt(<scp>ii</scp>)-8-hydroxyquinoline-5-sulfonic acid complex/N-(4-aminobutyl)-N-ethylisoluminol/reduced graphene hybrids as nanocatalytic reaction platforms for chemiluminescence. RSC Advances, 2017, 7, 37261-37267.	3.6	10
18	Motion Control of Urea-Powered Biocompatible Hollow Microcapsules. ACS Nano, 2016, 10, 3597-3605.	14.6	276

#	Article	IF	CITATIONS
19	Durable Ag/AgCl nanowires assembled in a sponge for continuous water purification under sunlight. Materials Horizons, 2015, 2, 509-513.	12.2	31
20	Sensitive Immunosensor for N-Terminal Pro-brain Natriuretic Peptide Based on N-(Aminobutyl)-N-(ethylisoluminol)-Functionalized Gold Nanodots/Multiwalled Carbon Nanotube Electrochemiluminescence Nanointerface. ACS Applied Materials & Diterfaces, 2015, 7, 7599-7604.	8.0	50
21	Understanding the stability and reactivity of ultrathin tellurium nanowires in solution: An emerging platform for chemical transformation and material design. Nano Research, 2015, 8, 1081-1097.	10.4	45
22	Pumping through Porous Hydrophobic/Oleophilic Materials: An Alternative Technology for Oil Spill Remediation. Angewandte Chemie - International Edition, 2014, 53, 3612-3616.	13.8	253
23	Association, emulsifying, and solubilization properties of amphiphilic hyperbranched poly(acrylic) Tj ETQq $1\ 1\ 0.78$	4314 rgB1	Г <u> </u> Gverlock
24	Comparative Study of Solution Properties of Amphiphilic 8-Shaped Cyclic-(Polystyrene- <i>b</i> -Poly(acrylic acid)) ₂ and Its Linear Precursor. Macromolecules, 2014, 47, 2487-2495.	4.8	25
25	A Flexible and Highly Pressureâ€Sensitive Graphene–Polyurethane Sponge Based on Fractured Microstructure Design. Advanced Materials, 2013, 25, 6692-6698.	21.0	985
26	Stretchable Conductors Based on Silver Nanowires: Improved Performance through a Binary Network Design. Angewandte Chemie - International Edition, 2013, 52, 1654-1659.	13.8	182
27	Pressure Sensors: A Flexible and Highly Pressure-Sensitive Graphene-Polyurethane Sponge Based on Fractured Microstructure Design (Adv. Mater. 46/2013). Advanced Materials, 2013, 25, 6691-6691.	21.0	17