Sonia I Seneviratne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2168760/publications.pdf Version: 2024-02-01

		2565	2970
261	43,648	99	195
papers	citations	h-index	g-index
373	373	373	33014
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Summary of a workshop on extreme weather events in a warming world organized by the Royal Swedish Academy of Sciences. Tellus, Series B: Chemical and Physical Meteorology, 2022, 72, 1794236.	0.8	11
2	Responsibility of major emitters for country-level warming and extreme hot years. Communications Earth & Environment, 2022, 3, .	2.6	23
3	Do Electric Vehicles Mitigate Urban Heat? The Case of a Tropical City. Frontiers in Environmental Science, 2022, 10, .	1.5	7
4	Agricultural management effects on mean and extreme temperature trends. Earth System Dynamics, 2022, 13, 419-438.	2.7	6
5	COSMOS-Europe: a European network of cosmic-ray neutron soil moisture sensors. Earth System Science Data, 2022, 14, 1125-1151.	3.7	33
6	Reply to: Large influence of atmospheric vapor pressure deficit on ecosystem production efficiency. Nature Communications, 2022, 13, 1654.	5.8	1
7	Impacts of a revised surface roughness parameterization in the Community Land Model 5.1. Geoscientific Model Development, 2022, 15, 2365-2393.	1.3	9
8	From emission scenarios to spatially resolved projections with a chain of computationally efficient emulators: coupling of MAGICC (v7.5.1) and MESMER (v0.8.3). Geoscientific Model Development, 2022, 15, 2085-2103.	1.3	12
9	Field-based tree mortality constraint reduces estimates of model-projected forest carbon sinks. Nature Communications, 2022, 13, 2094.	5.8	8
10	MESMER-M: an Earth system model emulator for spatially resolved monthly temperature. Earth System Dynamics, 2022, 13, 851-877.	2.7	6
11	A compound event-oriented framework to tropical fire risk assessment in a changing climate. Environmental Research Letters, 2022, 17, 065015.	2.2	14
12	Attributing and Projecting Heatwaves Is Hard: We Can Do Better. Earth's Future, 2022, 10, .	2.4	39
13	Regional and seasonal partitioning of water and temperature controls on global land carbon uptake variability. Nature Communications, 2022, 13, .	5.8	18
14	CLIMFILL v0.9: a framework for intelligently gap filling Earth observations. Geoscientific Model Development, 2022, 15, 4569-4596.	1.3	5
15	Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nature Climate Change, 2021, 11, 38-44.	8.1	138
16	Globally observed trends in mean and extreme river flow attributed to climate change. Science, 2021, 371, 1159-1162.	6.0	213
17	Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature, 2021, 592, 65-69.	13.7	241
18	A framework for complex climate change risk assessment. One Earth, 2021, 4, 489-501.	3.6	244

#	Article	IF	CITATIONS
19	Pathways of climate resilience over the 21st century. Environmental Research Letters, 2021, 16, 054058.	2.2	14
20	Gâ€RUN ENSEMBLE: A Multiâ€Forcing Observationâ€Based Global Runoff Reanalysis. Water Resources Research, 2021, 57, e2020WR028787.	1.7	44
21	Empirical estimate of forestation-induced precipitation changes in Europe. Nature Geoscience, 2021, 14, 473-478.	5.4	53
22	Early Summer Soil Moisture Contribution to Western European Summer Warming. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034646.	1.2	15
23	Hot weather and heat extremes: health risks. Lancet, The, 2021, 398, 698-708.	6.3	469
24	Intergenerational inequities in exposure to climate extremes. Science, 2021, 374, 158-160.	6.0	148
25	Prioritizing forestation based on biogeochemical and local biogeophysical impacts. Nature Climate Change, 2021, 11, 867-871.	8.1	43
26	Stronger temperature–moisture couplings exacerbate the impact of climate warming on global crop yields. Nature Food, 2021, 2, 683-691.	6.2	100
27	Attribution of global lake systems change to anthropogenic forcing. Nature Geoscience, 2021, 14, 849-854.	5.4	70
28	The role of urban trees in reducing land surface temperatures in European cities. Nature Communications, 2021, 12, 6763.	5.8	123
29	Soil moisture dominates dryness stress on ecosystem production globally. Nature Communications, 2020, 11, 4892.	5.8	300
30	Human contribution to the record-breaking June and July 2019 heatwaves in Western Europe. Environmental Research Letters, 2020, 15, 094077.	2.2	95
31	Projecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales. Earth's Future, 2020, 8, e2020EF001616.	2.4	69
32	The COVID-19 lockdowns: a window into the Earth System. Nature Reviews Earth & Environment, 2020, 1, 470-481.	12.2	153
33	Evaluation of different methods for gap filling of longâ€ŧerm actual evapotranspiration time series measured by lysimeters. Vadose Zone Journal, 2020, 19, e20020.	1.3	7
34	Assessing the potential of soil moisture measurements for regional landslide early warning. Landslides, 2020, 17, 1881-1896.	2.7	84
35	Projected changes in hot, dry and wet extreme events' clusters in CMIP6 multi-model ensemble. Environmental Research Letters, 2020, 15, 094021.	2.2	83
36	Crossbreeding CMIP6 Earth System Models WithÂanÂEmulator for Regionally Optimized Land Temperature Projections. Geophysical Research Letters, 2020, 47, e2019GL086812.	1.5	11

#	Article	IF	CITATIONS
37	Regional Climate Sensitivity of Climate Extremes in CMIP6 Versus CMIP5 Multimodel Ensembles. Earth's Future, 2020, 8, e2019EF001474.	2.4	100
38	Global Heat Uptake by Inland Waters. Geophysical Research Letters, 2020, 47, e2020GL087867.	1.5	31
39	Terrestrial water loss at night: global relevance from observations and climate models. Hydrology and Earth System Sciences, 2020, 24, 793-807.	1.9	14
40	Observed changes in dry-season water availability attributed to human-induced climate change. Nature Geoscience, 2020, 13, 477-481.	5.4	132
41	Warming of hot extremes alleviated by expanding irrigation. Nature Communications, 2020, 11, 290.	5.8	118
42	Development of Future Heatwaves for Different Hazard Thresholds. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032070.	1.2	50
43	Emulating Earth system model temperatures with MESMER: from global mean temperature trajectories to grid-point-level realizations on land. Earth System Dynamics, 2020, 11, 139-159.	2.7	32
44	Storylines of the 2018 Northern Hemisphere heatwave at pre-industrial and higher global warming levels. Earth System Dynamics, 2020, 11, 855-873.	2.7	31
45	Heat stored in the Earth system: where does the energy go?. Earth System Science Data, 2020, 12, 2013-2041.	3.7	181
46	An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets. Earth System Science Data, 2020, 12, 2959-2970.	3.7	210
47	Biases in the albedo sensitivity to deforestation in CMIP5 models and their impacts on the associated historical radiative forcing. Earth System Dynamics, 2020, 11, 1209-1232.	2.7	4
48	Land–atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Annals of the New York Academy of Sciences, 2019, 1436, 19-35.	1.8	407
49	Evaluation of the HadGEM3-A simulations in view of detection and attribution of human influence on extreme events in Europe. Climate Dynamics, 2019, 52, 1187-1210.	1.7	34
50	Regional climate model projections underestimate future warming due to missing plant physiological CO ₂ response. Environmental Research Letters, 2019, 14, 114019.	2.2	26
51	Comment on "The global tree restoration potential― Science, 2019, 366, .	6.0	67
52	Intercomparison of daily precipitation persistence in multiple global observations and climate models. Environmental Research Letters, 2019, 14, 105009.	2.2	6
53	Revisiting assessments of ecosystem drought recovery. Environmental Research Letters, 2019, 14, 114028.	2.2	24
54	On the use of indices to study extreme precipitation on sub-daily and daily timescales. Environmental Research Letters, 2019, 14, 125008.	2.2	73

#	Article	IF	CITATIONS
55	Identifying Key Driving Processes of Major Recent HeatÂWaves. Journal of Geophysical Research D: Atmospheres, 2019, 124, 11746-11765.	1.2	93
56	Importance of Framing for Extreme Event Attribution: The Role of Spatial and Temporal Scales. Earth's Future, 2019, 7, 1192-1204.	2.4	21
57	Towards more predictive and interdisciplinary climate change ecosystem experiments. Nature Climate Change, 2019, 9, 809-816.	8.1	28
58	Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proceedings of the United States of America, 2019, 116, 18848-18853.	3.3	283
59	The human imperative of stabilizing global climate change at 1.5°C. Science, 2019, 365, .	6.0	498
60	Soil Moisture Effects on Afternoon Precipitation Occurrence in Current Climate Models. Geophysical Research Letters, 2019, 46, 1861-1869.	1.5	22
61	Large influence of soil moisture on long-term terrestrial carbon uptake. Nature, 2019, 565, 476-479.	13.7	409
62	Concurrent 2018 Hot Extremes Across Northern Hemisphere Due to Humanâ€Induced Climate Change. Earth's Future, 2019, 7, 692-703.	2.4	182
63	Coupling between the terrestrial carbon and water cycles—a review. Environmental Research Letters, 2019, 14, 083003.	2.2	118
64	Drought impacts on terrestrial primary production underestimated by satellite monitoring. Nature Geoscience, 2019, 12, 264-270.	5.4	259
65	Concerns of young protesters are justified. Science, 2019, 364, 139-140.	6.0	96
66	State-of-the-art global models underestimate impacts from climate extremes. Nature Communications, 2019, 10, 1005.	5.8	168
67	Observed Trends in Global Indicators of Mean and Extreme Streamflow. Geophysical Research Letters, 2019, 46, 756-766.	1.5	125
68	Observational Constraints Reduce Likelihood of Extreme Changes in Multidecadal Land Water Availability. Geophysical Research Letters, 2019, 46, 736-744.	1.5	27
69	GRUN: an observation-based global gridded runoff dataset from 1902 to 2014. Earth System Science Data, 2019, 11, 1655-1674.	3.7	144
70	Drought Persistence Errors in Global Climate Models. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3483-3496.	1.2	49
71	Historical deforestation locally increased the intensity of hot days in northern mid-latitudes. Nature Climate Change, 2018, 8, 386-390.	8.1	73
72	Quantifying soil moisture impacts on light use efficiency across biomes. New Phytologist, 2018, 218, 1430-1449.	3.5	184

#	Article	IF	CITATIONS
73	Biogeophysical Impacts of Landâ€Use Change on Climate Extremes in Lowâ€Emission Scenarios: Results From HAPPIâ€Land. Earth's Future, 2018, 6, 396-409.	2.4	31
74	Land radiative management as contributor to regional-scale climate adaptation and mitigation. Nature Geoscience, 2018, 11, 88-96.	5.4	96
75	Advancing Global and Regional Reanalyses. Bulletin of the American Meteorological Society, 2018, 99, ES139-ES144.	1.7	15
76	Comparative Study of a Longâ€Established Large Weighing Lysimeter and a Stateâ€ofâ€theâ€Art Miniâ€lysimeter Vadose Zone Journal, 2018, 17, 1-10.	1.3	8
77	Satellite and In Situ Observations for Advancing Global Earth Surface Modelling: A Review. Remote Sensing, 2018, 10, 2038.	1.8	95
78	Assessing the Dynamic Versus Thermodynamic Origin of Climate Model Biases. Geophysical Research Letters, 2018, 45, 8471-8479.	1.5	30
79	A theoretical approach to assess soil moisture–climate coupling across CMIP5 and GLACE-CMIP5 experiments. Earth System Dynamics, 2018, 9, 1217-1234.	2.7	18
80	Varying soil moisture–atmosphere feedbacks explain divergent temperature extremes and precipitation projections in central Europe. Earth System Dynamics, 2018, 9, 1107-1125.	2.7	79
81	Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature, 2018, 560, 628-631.	13.7	295
82	Changes in climate extremes over West and Central Africa at 1.5 °C and 2 °C global warming. Environmental Research Letters, 2018, 13, 065020.	2.2	70
83	Evapotranspiration simulations in ISIMIP2a—Evaluation of spatio-temporal characteristics with a comprehensive ensemble of independent datasets. Environmental Research Letters, 2018, 13, 075001.	2.2	38
84	Global Contributions of Incoming Radiation and Land Surface Conditions to Maximum Nearâ€6urface Air Temperature Variability and Trend. Geophysical Research Letters, 2018, 45, 5034-5044.	1.5	22
85	Future climate risk from compound events. Nature Climate Change, 2018, 8, 469-477.	8.1	1,074
86	Regional scaling of annual mean precipitation and water availability with global temperature change. Earth System Dynamics, 2018, 9, 227-240.	2.7	64
87	Modelled biophysical impacts of conservation agriculture on local climates. Global Change Biology, 2018, 24, 4758-4774.	4.2	27
88	Blocking and its Response to Climate Change. Current Climate Change Reports, 2018, 4, 287-300.	2.8	273
89	Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20160450.	1.6	46
90	A spatially explicit representation of conservation agriculture for application in global change studies. Global Change Biology, 2018, 24, 4038-4053.	4.2	59

#	Article	IF	CITATIONS
91	The many possible climates from the Paris Agreement's aim of 1.5 °C warming. Nature, 2018, 558, 41-49.	13.7	116
92	Crop productivity changes in 1.5 °C and 2 °C worlds under climate sensitivity uncertainty. Environmental Research Letters, 2018, 13, 064007.	2.2	79
93	Regional amplification of projected changes in extreme temperatures strongly controlled by soil moistureâ€ŧemperature feedbacks. Geophysical Research Letters, 2017, 44, 1511-1519.	1.5	189
94	Climate research must sharpen its view. Nature Climate Change, 2017, 7, 89-91.	8.1	80
95	Presentâ€day irrigation mitigates heat extremes. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1403-1422.	1.2	194
96	Selenium deficiency risk predicted to increase under future climate change. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2848-2853.	3.3	260
97	Can climateâ€effective land management reduce regional warming?. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2269-2288.	1.2	66
98	A global reconstruction of climateâ€driven subdecadal water storage variability. Geophysical Research Letters, 2017, 44, 2300-2309.	1.5	87
99	Quantifying Spatiotemporal Variations of Soil Moisture Control on Surface Energy Balance and Near-Surface Air Temperature. Journal of Climate, 2017, 30, 7105-7124.	1.2	121
100	Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nature Climate Change, 2017, 7, 432-436.	8.1	323
101	Variability of Soil Moisture and Sea Surface Temperatures Similarly Important for Warm-Season Land Climate in the Community Earth System Model. Journal of Climate, 2017, 30, 2141-2162.	1.2	44
102	Largeâ€Scale Controls of the Surface Water Balance Over Land: Insights From a Systematic Review and Metaâ€Analysis. Water Resources Research, 2017, 53, 9659-9678.	1.7	86
103	Anthropogenic climate change detected in European renewable freshwater resources. Nature Climate Change, 2017, 7, 813-816.	8.1	103
104	Dependence of drivers affects risks associated with compound events. Science Advances, 2017, 3, e1700263.	4.7	453
105	Hydrological and biogeochemical constraints on terrestrial carbon cycle feedbacks. Environmental Research Letters, 2017, 12, 014009.	2.2	12
106	Methods and Model Dependency of Extreme Event Attribution: The 2015 European Drought. Earth's Future, 2017, 5, 1034-1043.	2.4	59
107	Regional warming of hot extremes accelerated by surface energy fluxes. Geophysical Research Letters, 2017, 44, 7011-7019.	1.5	79
108	ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sensing of Environment, 2017, 203, 185-215.	4.6	781

#	Article	IF	CITATIONS
109	Correspondence: Flawed assumptions compromise water yield assessment. Nature Communications, 2017, 8, 14795.	5.8	14
110	Trends in ecosystem recovery from drought. Nature, 2017, 548, 164-165.	13.7	16
111	Understanding, modeling and predicting weather and climate extremes: Challenges and opportunities. Weather and Climate Extremes, 2017, 18, 65-74.	1.6	178
112	A drought event composite analysis using satellite remote-sensing based soil moisture. Remote Sensing of Environment, 2017, 203, 216-225.	4.6	114
113	Historical Land-Cover Change Impacts on Climate: Comparative Assessment of LUCID and CMIP5 Multimodel Experiments. Journal of Climate, 2017, 30, 1439-1459.	1.2	77
114	Early warnings of hazardous thunderstorms over Lake Victoria. Environmental Research Letters, 2017, 12, 074012.	2.2	35
115	Investigating soil moisture–climate interactions with prescribed soil moisture experiments: an assessment with the Community Earth System Model (version 1.2). Geoscientific Model Development, 2017, 10, 1665-1677.	1.3	23
116	Refining multi-model projections of temperature extremes by evaluation against land–atmosphere coupling diagnostics. Earth System Dynamics, 2017, 8, 387-403.	2.7	53
117	Changes in regional climate extremes as a function of global mean temperature: an interactive plotting framework. Geoscientific Model Development, 2017, 10, 3609-3634.	1.3	75
118	Simulated changes in aridity from the last glacial maximum to 4xCO ₂ . Environmental Research Letters, 2017, 12, 114021.	2.2	44
119	Bivariate return periods of temperature and precipitation explain aÂlarge fraction of European crop yields. Biogeosciences, 2017, 14, 3309-3320.	1.3	69
120	A site-level comparison of lysimeter and eddy covariance flux measurements of evapotranspiration. Hydrology and Earth System Sciences, 2017, 21, 1809-1825.	1.9	65
121	Basin-scale water-balance dataset (BSWB): an update. Earth System Science Data, 2017, 9, 251-258.	3.7	11
122	Did European temperatures in 1540 exceed present-day records?. Environmental Research Letters, 2016, 11, 114021.	2.2	39
123	A two-parameter Budyko function to represent conditions under which evapotranspiration exceeds precipitation. Hydrology and Earth System Sciences, 2016, 20, 2195-2205.	1.9	67
124	LS3MIP (v1.0) contribution to CMIP6: the Land Surface, Snow and Soil moisture Model Intercomparison Project – aims, setup and expected outcome. Geoscientific Model Development, 2016, 9, 2809-2832.	1.3	152
125	The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. Geoscientific Model Development, 2016, 9, 2973-2998.	1.3	343
126	The WACMOS-ET project – PartÂ2: Evaluation of global terrestrial evaporation data sets. Hydrology and Earth System Sciences, 2016, 20, 823-842.	1.9	253

#	Article	IF	CITATIONS
127	The WACMOS-ET project – PartÂ1: Tower-scale evaluation of four remote-sensing-based evapotranspiration algorithms. Hydrology and Earth System Sciences, 2016, 20, 803-822.	1.9	164
128	A novel bias correction methodology for climate impact simulations. Earth System Dynamics, 2016, 7, 71-88.	2.7	75
129	The sensitivity of water availability to changes in the aridity index and other factors—A probabilistic analysis in the Budyko space. Geophysical Research Letters, 2016, 43, 6985-6994.	1.5	86
130	The dry season intensity as a key driver of NPP trends. Geophysical Research Letters, 2016, 43, 2632-2639.	1.5	60
131	Anthropogenic climate change affects meteorological drought risk in Europe. Environmental Research Letters, 2016, 11, 044005.	2.2	86
132	Shortâ€ŧerm favorable weather conditions are an important control of interannual variability in carbon and water fluxes. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2186-2198.	1.3	60
133	Hazardous thunderstorm intensification over Lake Victoria. Nature Communications, 2016, 7, 12786.	5.8	87
134	Constraining future terrestrial carbon cycle projections using observationâ€based water and carbon flux estimates. Global Change Biology, 2016, 22, 2198-2215.	4.2	46
135	Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nature Climate Change, 2016, 6, 869-874.	8.1	300
136	Global Meteorological Drought: A Synthesis of Current Understanding with a Focus on SST Drivers of Precipitation Deficits. Journal of Climate, 2016, 29, 3989-4019.	1.2	161
137	Assessing Global Water Storage Variability from GRACE: Trends, Seasonal Cycle, Subseasonal Anomalies and Extremes. Surveys in Geophysics, 2016, 37, 357-395.	2.1	180
138	Role of soil moisture versus recent climate change for the 2010 heat wave in western Russia. Geophysical Research Letters, 2016, 43, 2819-2826.	1.5	160
139	Influence of landâ€atmosphere feedbacks on temperature and precipitation extremes in the GLACE MIP5 ensemble. Journal of Geophysical Research D: Atmospheres, 2016, 121, 607-623.	1.2	102
140	Longâ€ŧerm predictability of soil moisture dynamics at the global scale: Persistence versus largeâ€scale drivers. Geophysical Research Letters, 2016, 43, 8554-8562.	1.5	46
141	Record dry summer in 2015 challenges precipitation projections in Central Europe. Scientific Reports, 2016, 6, 28334.	1.6	115
142	Is land surface processes representation a possible weak link in current Regional Climate Models?. Environmental Research Letters, 2016, 11, 074027.	2.2	38
143	Allowable CO2 emissions based on regional and impact-related climate targets. Nature, 2016, 529, 477-483.	13.7	491
144	Observation-based gridded runoff estimates for Europe (E-RUN version 1.1). Earth System Science Data, 2016, 8, 279-295.	3.7	33

#	Article	IF	CITATIONS
145	Assessing Global Water Storage Variability from GRACE: Trends, Seasonal Cycle, Subseasonal Anomalies and Extremes. Space Sciences Series of ISSI, 2016, , 167-205.	0.0	1
146	The significance of land-atmosphere interactions in the Earth system—iLEAPS achievements and perspectives. Anthropocene, 2015, 12, 69-84.	1.6	38
147	A submonthly database for detecting changes in vegetationâ€atmosphere coupling. Geophysical Research Letters, 2015, 42, 9816-9824.	1.5	66
148	Impact of soil moisture on extreme maximum temperatures in Europe. Weather and Climate Extremes, 2015, 9, 57-67.	1.6	149
149	Assessment of future changes in water availability and aridity. Geophysical Research Letters, 2015, 42, 5493-5499.	1.5	136
150	Introducing a probabilistic Budyko framework. Geophysical Research Letters, 2015, 42, 2261-2269.	1.5	93
151	Spatial representativeness of soil moisture using in situ, remote sensing, and land reanalysis data. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9955-9964.	1.2	42
152	Does model performance improve with complexity? A case study with three hydrological models. Journal of Hydrology, 2015, 523, 147-159.	2.3	132
153	The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models. Climate Dynamics, 2015, 44, 3393-3429.	1.7	239
154	Tree-rings and people – different views on the 1540 Megadrought. Reply to Büntgen et al. 2015. Climatic Change, 2015, 131, 191-198.	1.7	20
155	Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Global Change Biology, 2015, 21, 2861-2880.	4.2	683
156	Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nature Communications, 2015, 6, 6443.	5.8	284
157	Climate engineering of vegetated land for hot extremes mitigation: An Earth system model sensitivity study. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2612-2623.	1.2	24
158	Introduction of a simple-model-based land surface dataset for Europe. Environmental Research Letters, 2015, 10, 044012.	2.2	25
159	Comparing IPCC assessments: how do the AR4 and SREX assessments of changes in extremes differ?. Climatic Change, 2015, 133, 7-21.	1.7	10
160	Interannual Coupling between Summertime Surface Temperature and Precipitation over Land: Processes and Implications for Climate Change*. Journal of Climate, 2015, 28, 1308-1328.	1.2	135
161	Influence of Amazonian deforestation on the future evolution of regional surface fluxes, circulation, surface temperature and precipitation. Climate Dynamics, 2015, 44, 2769-2786.	1.7	123
162	Fostering drought research and science-policy interfacing: Achievements of the DROUGHT-R&SPI project. , 2015, , 3-12.		1

10

#	Article	IF	CITATIONS
163	Towards observation-based gridded runoff estimates for Europe. Hydrology and Earth System Sciences, 2015, 19, 2859-2879.	1.9	36
164	HESS Opinions "A perspective on isotope versus non-isotope approaches to determine the contribution of transpiration to total evaporation". Hydrology and Earth System Sciences, 2014, 18, 2815-2827.	1.9	77
165	Using remotely sensed soil moisture for land–atmosphere coupling diagnostics: The role of surface vs. root-zone soil moisture variability. Remote Sensing of Environment, 2014, 154, 246-252.	4.6	134
166	Flood risk and climate change: global and regional perspectives. Hydrological Sciences Journal, 2014, 59, 1-28.	1.2	998
167	Kroll, Murakami, and Seneviratne Receive 2013 James B. Macelwane Medals: Response. Eos, 2014, 95, 6-6.	0.1	Ο
168	Today's virtual water consumption and trade under future water scarcity. Environmental Research Letters, 2014, 9, 074007.	2.2	54
169	On the spatial representativeness of temporal dynamics at European weather stations. International Journal of Climatology, 2014, 34, 3154-3160.	1.5	24
170	A few extreme events dominate global interannual variability in gross primary production. Environmental Research Letters, 2014, 9, 035001.	2.2	194
171	Summertime maximum and minimum temperature coupling asymmetry over Australia determined using WRF. Geophysical Research Letters, 2014, 41, 1546-1552.	1.5	42
172	Predicting above normal wildfire activity in southern Europe as a function of meteorological drought. Environmental Research Letters, 2014, 9, 084008.	2.2	100
173	Global assessment of trends in wetting and drying over land. Nature Geoscience, 2014, 7, 716-721.	5.4	613
174	No pause in the increase of hot temperature extremes. Nature Climate Change, 2014, 4, 161-163.	8.1	365
175	Preferential cooling of hot extremes from cropland albedo management. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9757-9761.	3.3	151
176	Using soil moisture forecasts for sub-seasonal summer temperature predictions in Europe. Climate Dynamics, 2014, 43, 3403-3418.	1.7	29
177	The year-long unprecedented European heat and drought of 1540 – a worst case. Climatic Change, 2014, 125, 349-363.	1.7	99
178	Absolute versus temporal anomaly and percent of saturation soil moisture spatial variability for six networks worldwide. Water Resources Research, 2014, 50, 5560-5576.	1.7	52
179	Deuterium excess as a proxy for continental moisture recycling and plant transpiration. Atmospheric Chemistry and Physics, 2014, 14, 4029-4054.	1.9	138
180	Land-surface controls on afternoon precipitation diagnosed from observational data: uncertainties and confounding factors. Atmospheric Chemistry and Physics, 2014, 14, 8343-8367.	1.9	63

#	Article	lF	CITATIONS
181	Systematic land climate and evapotranspiration biases in CMIP5 simulations. Geophysical Research Letters, 2014, 41, 128-134.	1.5	206
182	Climate extremes and the carbon cycle. Nature, 2013, 500, 287-295.	13.7	1,357
183	How Important is Vegetation Phenology for European Climate and Heat Waves?. Journal of Climate, 2013, 26, 10077-10100.	1.2	29
184	Impact of soil map specifications for European climate simulations. Climate Dynamics, 2013, 40, 123-141.	1.7	29
185	Impact of soil moistureâ€elimate feedbacks on CMIP5 projections: First results from the GLACE MIP5 experiment. Geophysical Research Letters, 2013, 40, 5212-5217.	1.5	314
186	Predictability of soil moisture and streamflow on subseasonal timescales: A case study. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,963.	1.2	31
187	Inferring Soil Moisture Memory from Streamflow Observations Using a Simple Water Balance Model. Journal of Hydrometeorology, 2013, 14, 1773-1790.	0.7	36
188	Global-Scale Estimation of Land Surface Heat Fluxes from Space. , 2013, , 249-282.		5
189	Evapotranspiration amplifies European summer drought. Geophysical Research Letters, 2013, 40, 2071-2075.	1.5	264
190	Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrology and Earth System Sciences, 2013, 17, 3707-3720.	1.9	310
191	Elusive drought: uncertainty in observed trends and short- and long-term CMIP5 projections. Hydrology and Earth System Sciences, 2013, 17, 1765-1781.	1.9	313
192	Propagation of soil moisture memory to streamflow and evapotranspiration in Europe. Hydrology and Earth System Sciences, 2013, 17, 3895-3911.	1.9	36
193	Climate Extremes: Challenges in Estimating and Understanding Recent Changes in the Frequency and Intensity of Extreme Climate and Weather Events. , 2013, , 339-389.		76
194	Asymmetric European summer heat predictability from wet and dry southern winters and springs. Nature Climate Change, 2012, 2, 736-741.	8.1	213
195	Hot days induced by precipitation deficits at the global scale. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12398-12403.	3.3	487
196	A Revised Framework for Analyzing Soil Moisture Memory in Climate Data: Derivation and Interpretation. Journal of Hydrometeorology, 2012, 13, 404-412.	0.7	43
197	Changes in Climate Extremes and their Impacts on the Natural Physical Environment. , 2012, , 109-230.		1,080
198	Historical drought trends revisited. Nature, 2012, 491, 338-339.	13.7	102

#	Article	IF	CITATIONS
199	Analysis of soil moisture memory from observations in Europe. Journal of Geophysical Research, 2012, 117, .	3.3	75
200	Swiss prealpine Rietholzbach research catchment and lysimeter: 32 year time series and 2003 drought event. Water Resources Research, 2012, 48, .	1.7	96
201	Modeling landâ€climate coupling in Europe: Impact of land surface representation on climate variability and extremes. Journal of Geophysical Research, 2012, 117, .	3.3	29
202	Role of land surface processes and diffuse/direct radiation partitioning in simulating the European climate. Biogeosciences, 2012, 9, 1695-1707.	1.3	36
203	A new perspective on the spatio-temporal variability of soil moisture: temporal dynamics versus time-invariant contributions. Hydrology and Earth System Sciences, 2012, 16, 2169-2179.	1.9	109
204	Comparison of four soil moisture sensor types under field conditions in Switzerland. Journal of Hydrology, 2012, 430-431, 39-49.	2.3	115
205	Global changes in extreme events: regional and seasonal dimension. Climatic Change, 2012, 110, 669-696.	1.7	442
206	Soil moisture effects on seasonal temperature and precipitation forecast scores in Europe. Climate Dynamics, 2012, 38, 349-362.	1.7	108
207	Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	312
208	Global intercomparison of 12 land surface heat flux estimates. Journal of Geophysical Research, 2011, 116, .	3.3	309
209	Soil moisture monitoring for climate research: Evaluation of a low-cost sensor in the framework of the Swiss Soil Moisture Experiment (SwissSMEX) campaign. Journal of Geophysical Research, 2011, 116, .	3.3	56
210	Investigating spatial climate relations using CARTs: An application to persistent hot days in a multimodel ensemble. Journal of Geophysical Research, 2011, 116, .	3.3	5
211	Drought and ecosystem carbon cycling. Agricultural and Forest Meteorology, 2011, 151, 765-773.	1.9	446
212	Local ecosystem feedbacks and critical transitions in the climate. Ecological Complexity, 2011, 8, 223-228.	1.4	54
213	Drought-induced building damages from simulations at regional scale. Natural Hazards and Earth System Sciences, 2011, 11, 3335-3342.	1.5	33
214	Vegetation-mediated impacts of trends in global radiation on land hydrology: a global sensitivity study. Global Change Biology, 2011, 17, 3453-3467.	4.2	39
215	Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nature Geoscience, 2011, 4, 17-21.	5.4	607
216	Impact of soil moisture–atmosphere coupling on European climate extremes and trends in a regional climate model. Climate Dynamics, 2011, 36, 1919-1939.	1.7	186

#	Article	IF	CITATIONS
217	COSMO-CLM2: a new version of the COSMO-CLM model coupled to the Community Land Model. Climate Dynamics, 2011, 37, 1889-1907.	1.7	66
218	Bivariate colour maps for visualizing climate data. International Journal of Climatology, 2011, 31, 1408-1412.	1.5	40
219	New diagnostic estimates of variations in terrestrial water storage based on ERAâ€Interim data. Hydrological Processes, 2011, 25, 996-1008.	1.1	30
220	Response to Comment on "Global Convergence in the Temperature Sensitivity of Respiration at Ecosystem Level― Science, 2011, 331, 1265-1265.	6.0	9
221	The Second Phase of the Global Land–Atmosphere Coupling Experiment: Soil Moisture Contributions to Subseasonal Forecast Skill. Journal of Hydrometeorology, 2011, 12, 805-822.	0.7	296
222	Intra-annual link of spring and autumn precipitation over France. Climate Dynamics, 2010, 35, 1207-1218.	1.7	9
223	Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Science Reviews, 2010, 99, 125-161.	4.0	3,380
224	Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 2010, 467, 951-954.	13.7	1,771
225	Contrasting response of European forest and grassland energy exchange to heatwaves. Nature Geoscience, 2010, 3, 722-727.	5.4	491
226	Statistical Analyses of Land–Atmosphere Feedbacks and Their Possible Pitfalls. Journal of Climate, 2010, 23, 3918-3932.	1.2	71
227	Global Convergence in the Temperature Sensitivity of Respiration at Ecosystem Level. Science, 2010, 329, 838-840.	6.0	446
228	Contribution of land surface initialization to subseasonal forecast skill: First results from a multiâ€model experiment. Geophysical Research Letters, 2010, 37, .	1.5	330
229	Comparing observations and processâ€based simulations of biosphereâ€atmosphere exchanges on multiple timescales. Journal of Geophysical Research, 2010, 115, .	3.3	66
230	Catchments as simple dynamical systems: Experience from a Swiss prealpine catchment. Water Resources Research, 2010, 46, .	1.7	105
231	Persistence of heat waves and its link to soil moisture memory. Geophysical Research Letters, 2010, 37,	1.5	184
232	Energy balance closure of eddy-covariance data: A multisite analysis for European FLUXNET stations. Agricultural and Forest Meteorology, 2010, 150, 1553-1567.	1.9	206
233	Simulating past droughts and associated building damages in France. Hydrology and Earth System Sciences, 2009, 13, 1739-1747.	1.9	52
234	Summer soil moisture regulated by precipitation frequency in China. Environmental Research Letters, 2009, 4, 044012.	2.2	39

#	Article	IF	CITATIONS
235	Parameter Sensitivity in LSMs: An Analysis Using Stochastic Soil Moisture Models and ELDAS Soil Parameters. Journal of Hydrometeorology, 2009, 10, 751-765.	0.7	40
236	Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophysical Research Letters, 2009, 36, .	1.5	444
237	Analysis of planetary boundary layer fluxes and landâ€∎tmosphere coupling in the regional climate model CLM. Journal of Geophysical Research, 2009, 114, .	3.3	33
238	A regional perspective on trends in continental evaporation. Geophysical Research Letters, 2009, 36, .	1.5	273
239	Contrasting spectral changes limit albedo impact on landâ€atmosphere coupling during the 2003 European heat wave. Geophysical Research Letters, 2008, 35, .	1.5	35
240	Analysis of ERA40-driven CLM simulations for Europe. Meteorologische Zeitschrift, 2008, 17, 349-367.	0.5	128
241	Analysis of CCLM model biases in relation to intra-ensemble model variability. Meteorologische Zeitschrift, 2008, 17, 369-382.	0.5	17
242	The Role of Land-Atmosphere Interactions for Climate Variability in Europe. , 2008, , 179-193.		37
243	Soil Moisture–Atmosphere Interactions during the 2003 European Summer Heat Wave. Journal of Climate, 2007, 20, 5081-5099.	1.2	757
244	Contribution of land-atmosphere coupling to recent European summer heat waves. Geophysical Research Letters, 2007, 34, .	1.5	512
245	Analysis of seasonal terrestrial water storage variations in regional climate simulations over Europe. Journal of Geophysical Research, 2007, 112, .	3.3	24
246	New data sets to estimate terrestrial water storage change. Eos, 2007, 88, 469-470.	0.1	22
247	An inter-comparison of regional climate models for Europe: model performance in present-day climate. Climatic Change, 2007, 81, 31-52.	1.7	602
248	Observed timescales of evapotranspiration response to soil moisture. Geophysical Research Letters, 2006, 33, .	1.5	119
249	Seasonal Variations in Terrestrial Water Storage for Major Midlatitude River Basins. Journal of Hydrometeorology, 2006, 7, 39-60.	0.7	75
250	Basin-scale water-balance estimates of terrestrial water storage variations from ECMWF operational forecast analysis. Geophysical Research Letters, 2006, 33, .	1.5	36
251	Soil Moisture Memory in AGCM Simulations: Analysis of Global Land–Atmosphere Coupling Experiment (GLACE) Data. Journal of Hydrometeorology, 2006, 7, 1090-1112.	0.7	257
252	Land–atmosphere coupling and climate change in Europe. Nature, 2006, 443, 205-209.	13.7	1,325

#	Article	IF	CITATIONS
253	GRACE-derived terrestrial water storage depletion associated with the 2003 European heat wave. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	136
254	Total basin discharge for the Amazon and Mississippi River basins from GRACE and a land-atmosphere water balance. Geophysical Research Letters, 2005, 32, .	1.5	154
255	Basin scale estimates of evapotranspiration using GRACE and other observations. Geophysical Research Letters, 2004, 31, .	1.5	405
256	Inferring Changes in Terrestrial Water Storage Using ERA-40 Reanalysis Data: The Mississippi River Basin. Journal of Climate, 2004, 17, 2039-2057.	1.2	118
257	Predictability and uncertainty in a regional climate model. Journal of Geophysical Research, 2003, 108, .	3.3	144
258	Summer dryness in a warmer climate: a process study with a regional climate model. Climate Dynamics, 2002, 20, 69-85.	1.7	90
259	The Earth system feedbacks that matter for contemporary climate. , 0, , 102-128.		3
260	European drought trends. Proceedings of the International Association of Hydrological Sciences, 0, 369, 75-79.	1.0	28
261	Corrigendum to "European drought trends" published in Proc. IAHS, 369, 75–79, 2015. Proceedings of the International Association of Hydrological Sciences. 0, 369, 203-203.	1.0	0