Zhen Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2168681/publications.pdf

Version: 2024-02-01

567281 454955 30 911 15 30 citations h-index g-index papers 33 33 33 1088 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Radical aryl migration enables diversity-oriented synthesis of structurally diverse medium/macro- or bridged-rings. Nature Communications, 2016, 7, 13852.	12.8	155
2	Direct Photocatalytic Synthesis of Mediumâ€Sized Lactams by Câ°C Bond Cleavage. Angewandte Chemie - International Edition, 2018, 57, 14225-14229.	13.8	104
3	Asymmetric Synthesis of Axially Chiral Isoquinolones: Nickelâ€Catalyzed Denitrogenative Transannulation. Angewandte Chemie - International Edition, 2015, 54, 9528-9532.	13.8	83
4	Catalytic Diverse Radical-Mediated 1,2-Cyanofunctionalization of Unactivated Alkenes via Synergistic Remote Cyano Migration and Protected Strategies. Organic Letters, 2016, 18, 6026-6029.	4.6	72
5	Octamethyl-substituted Pd(<scp>ii</scp>) phthalocyanine with long carrier lifetime as a dopant-free hole selective material for performance enhancement of perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 24416-24424.	10.3	45
6	Remote Control of Axial Chirality: Synthesis of Spirooxindole–Urazoles via Desymmetrization of ATAD. Organic Letters, 2018, 20, 6022-6026.	4.6	43
7	Bis(sulfonylimide)ruthenium(VI) Porphyrins: Xâ€ray Crystal Structure and Mechanism of CH Bond Amination by Density Functional Theory Calculations. Chemistry - A European Journal, 2013, 19, 11320-11331.	3.3	40
8	Oximinotrifluoromethylation of unactivated alkenes under ambient conditions. Chemical Communications, 2018, 54, 8885-8888.	4.1	39
9	Nickel(0)-Catalyzed Denitrogenative Transannulation of Benzotriazinones with Alkynes: Mechanistic Insights of Chemical Reactivity and Regio- and Enantioselectivity from Density Functional Theory and Experiment. ACS Catalysis, 2016, 6, 3496-3505.	11.2	33
10	One-Dimensional/Two-Dimensional Homo-Orientation Co ₃ O ₄ /NiCo ₂ O ₄ Nanoarray toward Ultrastable Hybrid Supercapacitor. Energy & Description of the supercapacitor of the supercapacitor. Energy & Description of the supercapacitor of the supercapaci	5.1	31
11	Visible-Light Carbon Nitride-Catalyzed Aerobic Cyclization of Thiobenzanilides under Ambient Air Conditions. Organic Letters, 2021, 23, 4843-4848.	4.6	27
12	Highly Efficient Deep-Blue Electroluminescence from a Aâ^Ï∈–Dâ^'π–A Structure Based Fluoresence Material with Exciton Utilizing Efficiency above 25%. ACS Applied Energy Materials, 2018, 1, 3243-3254.	5.1	23
13	Hydrofunctionalization of alkenols triggered by the addition of diverse radicals to unactivated alkenes and subsequent remote hydrogen atom translocation. Organic Chemistry Frontiers, 2018, 5, 2810-2814.	4.5	19
14	Stereoselective Construction of Complex Spirooxindoles via Bisthiourea Catalyzed Threeâ€Component Reactions. Chinese Journal of Chemistry, 2018, 36, 1182-1186.	4.9	14
15	Protonation-induced dual fluorescence of a blue fluorescent material with twisted A–π–D–π–A configuration. Journal of Materials Chemistry C, 2020, 8, 2442-2450.	5 . 5	14
16	Influence of Water Hydrogen Bonding on the Reactions of Arylnitrenium Ions With Guanosine: Hydrogen-Bonding Effects Can Favor Reaction at the C8 Site. Journal of Physical Chemistry B, 2009, 113, 6528-6532.	2.6	13
17	An Experimental and Theoretical Study of NSCI Decomposition in the Presence of Trace Amounts of Water. Journal of Physical Chemistry A, 2008, 112, 8561-8568.	2.5	9
18	Mechanistic Insights into Ni-Catalyzed Difunctionalization of Alkenes Using Organoboronic Acids and Organic Halides: Understanding Remarkable Substrate-Dependent Regioselectivity. Organometallics, 2020, 39, 2057-2067.	2.3	9

#	Article	IF	CITATIONS
19	Synthesis and evaluation of the epithelial-to- mesenchymal inhibitory activity of indazole-derived imidazoles as dual ALK5/p38α MAP inhibitors. European Journal of Medicinal Chemistry, 2021, 216, 113311.	5.5	9
20	A theoretical study on the oxidation of alkenes to aldehydes catalyzed by ruthenium porphyrins using O ₂ as the sole oxidant. Dalton Transactions, 2018, 47, 5286-5297.	3.3	8
21	Unveiling the Mechanism, Origin of Stereoselectivity, and Ligand-Dependent Reactivity in the Pd(II)-Catalyzed Unbiased Methylene C(sp ³)–H Alkenylation–Aza-Wacker Cyclization Reaction. Journal of Organic Chemistry, 2020, 85, 13191-13203.	3.2	7
22	Diels-Alder Reactivity of Metallofullerene Sc ₃ N@C ₇₈ and Structure Elucidation on Its Products. ChemistrySelect, 2017, 2, 8880-8885.	1.5	6
23	Do two oxidants (ferric-peroxo and ferryl-oxo species) act in the biosynthesis of estrogens? A DFT calculation. RSC Advances, 2018, 8, 15196-15201.	3.6	5
24	Mechanistic Insights into the Niâ€Catalyzed Reductive Carboxylation of Câ°O Bonds in Aromatic Esters with CO ₂ : Understanding Remarkable Ligand and Tracelessâ€Directingâ€Group Effects. Chemistry - an Asian Journal, 2018, 13, 1570-1581.	3.3	5
25	Computational study on palladium-catalyzed alkenylation of remote δ-C(sp ³)–H bonds with alkynes: a new understanding of mechanistic insight and origins of site-selectivity. RSC Advances, 2018, 8, 30186-30190.	3.6	4
26	Halogen-Bonding-Promoted C–H Malonylation of Indoles under Visible-Light Irradiation. Journal of Organic Chemistry, 0, , .	3.2	4
27	Rhodium-catalyzed reaction of diazoquinones with allylboronates to synthesize allylphenols. Organic Chemistry Frontiers, 2022, 9, 3677-3683.	4.5	3
28	Endohedral Regulator for Metallofullerene Chemical Property: Diels–Alder Reaction Studies of Sc _{<i>x</i>} Y _{3â€<i>x</i>} N@C ₈₀ â€ <i>I_h</i> (<i>x</i> =0â€3). ChemistrySelect, 2018, 3, 1495-1498.	1.5	2
29	Binding energies and interaction origins between nonclassical single-electron hydrogen, sodium and lithium bonds and neutral boron-containing radicals: a theoretical investigation. Science Bulletin, 2014, 59, 2597-2607.	1.7	1
30	A Theoretical Study on Pd-catalyzed, Friedel-Crafts Intermolecular Acylation: Does Generated In Situ Aroyl Triflate Act as A Reactive Electrophile to Functionalize C–H Bond of Arenes?. Catalysts, 2019, 9, 141.	3.5	1