
## Stephanie Schubert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2168494/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Miniemulsion polymerization at low temperature: A strategy for one-pot encapsulation of<br>hydrophobic anti-inflammatory drugs into polyester-containing nanoparticles. Journal of Colloid and<br>Interface Science, 2022, 612, 628-638.                | 9.4 | 5         |
| 2  | Ethoxy acetalated dextran-based nanocarriers accomplish efficient inhibition of leukotriene<br>formation by a novel FLAP antagonist in human leukocytes and blood. Cellular and Molecular Life<br>Sciences, 2022, 79, 1.                                | 5.4 | 7         |
| 3  | Self-assembled PEGylated amphiphilic polypeptides for gene transfection. Journal of Materials<br>Chemistry B, 2021, 9, 8224-8236.                                                                                                                       | 5.8 | 7         |
| 4  | Characterization of a library of vitamin A-functionalized polymethacrylate-based nanoparticles for siRNA delivery. Polymer Chemistry, 2021, 12, 911-925.                                                                                                | 3.9 | 5         |
| 5  | In vivo coherent antiâ€Stokes Raman scattering microscopy reveals vitamin A distribution in the liver.<br>Journal of Biophotonics, 2021, 14, e202100040.                                                                                                | 2.3 | 3         |
| 6  | Dual Photo- and pH-Responsive Spirooxazine-Functionalized Dextran Nanoparticles.<br>Biomacromolecules, 2020, 21, 3620-3630.                                                                                                                             | 5.4 | 13        |
| 7  | Formulation of Liver-Specific PLGA-DY-635 Nanoparticles Loaded with the Protein Kinase C Inhibitor<br>BisindolyImaleimide I. Pharmaceutics, 2020, 12, 1110.                                                                                             | 4.5 | 6         |
| 8  | Encapsulation of the dual FLAP/mPEGS-1 inhibitor BRP-187 into acetalated dextran and PLGA nanoparticles improves its cellular bioactivity. Journal of Nanobiotechnology, 2020, 18, 73.                                                                  | 9.1 | 21        |
| 9  | Tunable nanogels by host–guest interaction with carboxylate pillar[5]arene for controlled encapsulation and release of doxorubicin. Nanoscale, 2020, 12, 13595-13605.                                                                                   | 5.6 | 6         |
| 10 | Straightforward Access to Glycosylated, Acid Sensitive Nanogels by Host–Guest Interactions with<br>Sugar-Modified Pillar[5]arenes. ACS Macro Letters, 2020, 9, 540-545.                                                                                 | 4.8 | 11        |
| 11 | Degradable polycaprolactone nanoparticles stabilized <i>via</i> supramolecular host–guest<br>interactions with pH-responsive polymer-pillar[5]arene conjugates. Polymer Chemistry, 2020, 11,<br>1985-1997.                                              | 3.9 | 4         |
| 12 | Improved Bioactivity of the Natural Product 5-Lipoxygenase Inhibitor Hyperforin by Encapsulation into<br>Polymeric Nanoparticles. Molecular Pharmaceutics, 2020, 17, 810-816.                                                                           | 4.6 | 14        |
| 13 | Polymer-based nanoparticles for biomedical applications. Frontiers of Nanoscience, 2020, 16, 233-252.                                                                                                                                                   | 0.6 | 4         |
| 14 | Effect of surfactant on the size and stability of PLGA nanoparticles encapsulating a protein kinase C inhibitor. International Journal of Pharmaceutics, 2019, 566, 756-764.                                                                            | 5.2 | 44        |
| 15 | Utilization of 4â€(trifluoromethyl)benzenesulfonates as Counter Ions Tunes the Initiator Efficiency of<br>Sophisticated Initiators for the Preparation of Wellâ€Defined poly(2â€oxazoline)s. Macromolecular Rapid<br>Communications, 2019, 40, 1900094. | 3.9 | 5         |
| 16 | Smart pH-Sensitive Nanogels for Controlled Release in an Acidic Environment. Biomacromolecules, 2019, 20, 130-140.                                                                                                                                      | 5.4 | 43        |
| 17 | Spherical and Wormâ€Like Micelles from Fructoseâ€Functionalized Polyether Block Copolymers.<br>Macromolecular Bioscience, 2018, 18, e1700396.                                                                                                           | 4.1 | 7         |
| 18 | Accelerating the acidic degradation of a novel thermoresponsive polymer by host–guest interaction.<br>Polymer Chemistry, 2018, 9, 2634-2642.                                                                                                            | 3.9 | 9         |

| #  | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Comparison of random and gradient amino functionalized poly(2â€oxazoline)s: Can the transfection<br>efficiency be tuned by the macromolecular structure?. Journal of Polymer Science Part A, 2018, 56,<br>1210-1224.                                         | 2.3  | 5         |
| 20 | Photocontrolled Release of Chemicals from Nano―and Microparticle Containers. Angewandte Chemie -<br>International Edition, 2018, 57, 2479-2482.                                                                                                              | 13.8 | 25        |
| 21 | From Dendrimers to Macrocycles: 80 Years George R. Newkome—Milestones of a Gentleman Scientist.<br>Macromolecular Chemistry and Physics, 2018, 219, 1800269.                                                                                                 | 2.2  | 4         |
| 22 | Metal-Containing Polymers and Metallopolymers: A Special Issue Dedicated to Prof. George R.<br>Newkome. Macromolecular Rapid Communications, 2018, 39, 1800664.                                                                                              | 3.9  | 0         |
| 23 | "Green―ethers as solvent alternatives for anionic ring-opening polymerizations of ethylene oxide<br>(EO): In-situ kinetic and advanced characterization studies. Polymer, 2018, 159, 86-94.                                                                  | 3.8  | 10        |
| 24 | Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Progress in Polymer Science, 2018, 87, 107-164.                                                                                                                        | 24.7 | 177       |
| 25 | Dual pH and ultrasound responsive nanoparticles with pH triggered surface charge-conversional properties. Polymer Chemistry, 2017, 8, 1328-1340.                                                                                                             | 3.9  | 38        |
| 26 | Site-Specific POxylation of Interleukin-4. ACS Biomaterials Science and Engineering, 2017, 3, 304-312.                                                                                                                                                       | 5.2  | 40        |
| 27 | Uptake of Retinoic Acidâ€Modified PMMA Nanoparticles in LXâ€2 and Liver Tissue by Raman Imaging and<br>Intravital Microscopy. Macromolecular Bioscience, 2017, 17, 1700064.                                                                                  | 4.1  | 12        |
| 28 | Polymersomes with Endosomal pH-Induced Vesicle-to-Micelle Morphology Transition and a Potential Application for Controlled Doxorubicin Delivery. Biomacromolecules, 2017, 18, 3280-3290.                                                                     | 5.4  | 28        |
| 29 | Retinol initiated poly(lactide)s: stability upon polymerization and nanoparticle preparation. Polymer Chemistry, 2017, 8, 4378-4387.                                                                                                                         | 3.9  | 16        |
| 30 | Dual Responsive Nanoparticles from a RAFT Copolymer Library for the Controlled Delivery of Doxorubicin. Macromolecules, 2016, 49, 3856-3868.                                                                                                                 | 4.8  | 28        |
| 31 | Safety and regulatory review of dyes commonly used as excipients in pharmaceutical and nutraceutical applications. European Journal of Pharmaceutical Sciences, 2016, 93, 264-273.                                                                           | 4.0  | 63        |
| 32 | Thermodynamic compatibility of actives encapsulated into PEGâ€PLA nanoparticles: <i>In Silic</i> o predictions and experimental verification. Journal of Computational Chemistry, 2016, 37, 2220-2227.                                                       | 3.3  | 12        |
| 33 | Synthesis and characterization of colored EUDRAGIT <sup>®</sup> as enteric coating material. Journal of Polymer Science Part A, 2016, 54, 2386-2393.                                                                                                         | 2.3  | 3         |
| 34 | Cellular uptake of PLA nanoparticles studied by light and electron microscopy: synthesis,<br>characterization and biocompatibility studies using an iridium( <scp>iii</scp> ) complex as correlative<br>label. Chemical Communications, 2016, 52, 4361-4364. | 4.1  | 13        |
| 35 | A Pandora's Box of New Materials—Metallopolymers. Macromolecular Rapid Communications, 2015, 36,<br>585-585.                                                                                                                                                 | 3.9  | 12        |
| 36 | RAFT made methacrylate copolymers for reversible pHâ€responsive nanoparticles. Journal of Polymer<br>Science Part A, 2015, 53, 2711-2721.                                                                                                                    | 2.3  | 21        |

STEPHANIE SCHUBERT

| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Stabilization of factor VIII by poly(2â€oxazoline) hydrogels. Journal of Polymer Science Part A, 2015, 53,<br>10-14.                                                                               | 2.3  | 17        |
| 38 | Multifunctional poly(methacrylate) polyplex libraries: A platform for gene delivery inspired by nature.<br>Journal of Controlled Release, 2015, 209, 1-11.                                         | 9.9  | 19        |
| 39 | The influence of polymer architecture on in vitro pDNA transfection. Journal of Materials Chemistry<br>B, 2015, 3, 7477-7493.                                                                      | 5.8  | 66        |
| 40 | Dextran-graft-linear poly(ethylene imine)s for gene delivery: Importance of the linking strategy.<br>Carbohydrate Polymers, 2014, 113, 597-606.                                                    | 10.2 | 29        |
| 41 | Novel Insights Into Appropriate Encapsulation Methods for Bioactive Compounds Into Polymers: A<br>Study With Peptides and HDAC Inhibitors. Macromolecular Bioscience, 2014, 14, 69-80.             | 4.1  | 10        |
| 42 | Toward pH-Responsive Coating Materials—High-Throughput Study of (Meth)acrylic Copolymers. ACS<br>Combinatorial Science, 2014, 16, 386-392.                                                         | 3.8  | 6         |
| 43 | Star-Shaped Drug Carriers for Doxorubicin with POEGMA and POEtOxMA Brush-like Shells: A<br>Structural, Physical, and Biological Comparison. Biomacromolecules, 2013, 14, 2536-2548.                | 5.4  | 40        |
| 44 | Parallel High-Throughput Screening of Polymer Vectors for Nonviral Gene Delivery: Evaluation of<br>Structure–Property Relationships of Transfection. ACS Combinatorial Science, 2013, 15, 475-482. | 3.8  | 31        |
| 45 | A toolbox of differently sized and labeled PMMA nanoparticles for cellular uptake investigations.<br>Soft Matter, 2013, 9, 99-108.                                                                 | 2.7  | 46        |
| 46 | Resonance Raman Spectral Imaging of Intracellular Uptake of βâ€Carotene Loaded<br>Poly(D, <scp>L</scp> â€lactideâ€ <i>co</i> â€glycolide) Nanoparticles. ChemPhysChem, 2013, 14, 155-161.          | 2.1  | 19        |
| 47 | Fluorescence imaging of cancer tissue based on metal-free polymeric nanoparticles – a review.<br>Journal of Materials Chemistry B, 2013, 1, 1994.                                                  | 5.8  | 92        |
| 48 | Polyelectrolyte Complexes of DNA and Linear PEI: Formation, Composition and Properties. Langmuir, 2012, 28, 16167-16176.                                                                           | 3.5  | 67        |
| 49 | Preparation, Cellular Internalization, and Biocompatibility of Highly Fluorescent PMMA<br>Nanoparticles. Macromolecular Rapid Communications, 2012, 33, 1791-1797.                                 | 3.9  | 34        |
| 50 | Nanoprecipitation of poly(methyl methacrylate)â€based nanoparticles: Effect of the molar mass and polymer behavior. Journal of Polymer Science Part A, 2012, 50, 2906-2913.                        | 2.3  | 33        |
| 51 | Macromolecules Containing Metal Ions. Macromolecular Rapid Communications, 2012, 33, 447-447.                                                                                                      | 3.9  | 3         |
| 52 | Branched and linear poly(ethylene imine)-based conjugates: synthetic modification, characterization, and application. Chemical Society Reviews, 2012, 41, 4755.                                    | 38.1 | 268       |
| 53 | Acid-Degradable Cationic Dextran Particles for the Delivery of siRNA Therapeutics. Bioconjugate Chemistry, 2011, 22, 1056-1065.                                                                    | 3.6  | 142       |
| 54 | Nanoprecipitation and nanoformulation of polymers: from history to powerful possibilities beyond poly(lactic acid). Soft Matter, 2011, 7, 1581-1588.                                               | 2.7  | 320       |

STEPHANIE SCHUBERT

| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Examination and optimization of the self-assembly of biocompatible, polymeric nanoparticles by high-throughput nanoprecipitation. Soft Matter, 2011, 7, 5030.                                                                                             | 2.7  | 31        |
| 56 | Linear Polyethyleneimine: Optimized Synthesis and Characterization – On the Way to "Pharmagrade―<br>Batches. Macromolecular Chemistry and Physics, 2011, 212, 1918-1924.                                                                                  | 2.2  | 44        |
| 57 | Complexation of Terpyridineâ€Containing Dextrans: Toward Waterâ€Soluble Supramolecular Structures.<br>Macromolecular Rapid Communications, 2010, 31, 921-927.                                                                                             | 3.9  | 10        |
| 58 | Multifunctional Poly(2â€oxazoline) Nanoparticles for Biological Applications. Macromolecular Rapid<br>Communications, 2010, 31, 1869-1873.                                                                                                                | 3.9  | 67        |
| 59 | Labeled Nanoparticles Based on Pharmaceutical EUDRAGIT® S 100 Polymers. Macromolecular Rapid Communications, 2010, 31, 2053-2058.                                                                                                                         | 3.9  | 13        |
| 60 | Characterization of poly(methyl methacrylate) nanoparticles prepared by nanoprecipitation using<br>analytical ultracentrifugation, dynamic light scattering, and scanning electron microscopy. Journal<br>of Polymer Science Part A, 2010, 48, 3924-3931. | 2.3  | 54        |
| 61 | Preparation and characterization of nanoparticles based on dextran–drug conjugates. Journal of<br>Colloid and Interface Science, 2009, 338, 56-62.                                                                                                        | 9.4  | 98        |
| 62 | Synthetic polymeric nanoparticles by nanoprecipitation. Journal of Materials Chemistry, 2009, 19, 3838.                                                                                                                                                   | 6.7  | 197       |
| 63 | Evaluation of fluorescent polysaccharide nanoparticles for pH-sensing. Organic and Biomolecular<br>Chemistry, 2009, 7, 1884.                                                                                                                              | 2.8  | 41        |
| 64 | Clicking Pentafluorostyrene Copolymers: Synthesis, Nanoprecipitation, and Glycosylation.<br>Macromolecules, 2009, 42, 2387-2394.                                                                                                                          | 4.8  | 208       |
| 65 | Determination of the Surface Coverage of Adsorbed Dextran and β-Cyclodextrin Derivatives on Gold by Surface Titration. Langmuir, 2009, 25, 4845-4847.                                                                                                     | 3.5  | 2         |
| 66 | Fluorescent Polysaccharide Nanoparticles for pH-Sensing. Journal of Photopolymer Science and<br>Technology = [Fotoporima Konwakai Shi], 2009, 22, 671-673.                                                                                                | 0.3  | 8         |
| 67 | Efficient Approach To Design Stable Water-Dispersible Nanoparticles of Hydrophobic Cellulose Esters.<br>Biomacromolecules, 2008, 9, 1487-1492.                                                                                                            | 5.4  | 132       |
| 68 | Biocompatible fluorescent nanoparticles for pH-sensoring. Soft Matter, 2008, 4, 1169.                                                                                                                                                                     | 2.7  | 87        |
| 69 | Structure Design of Multifunctional Furoate and Pyroglutamate Esters of Dextran by<br>Polymer-Analogous Reactions. Macromolecular Bioscience, 2007, 7, 297-306.                                                                                           | 4.1  | 24        |
| 70 | Nanoscale structures of dextran esters. Carbohydrate Polymers, 2007, 68, 280-286.                                                                                                                                                                         | 10.2 | 56        |
| 71 | Reactive polymeric nanoparticles based on unconventional dextran derivatives. European Polymer<br>Journal, 2007, 43, 697-703.                                                                                                                             | 5.4  | 26        |
| 72 | Synthesis and Characterization of Sulfur Containing Dextran- and β-Cyclodextrin Derivatives. Polymer<br>Bulletin, 2007, 59, 65-71.                                                                                                                        | 3.3  | 5         |

| #  | Article                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Functional Polymers Based on Dextran. , 2006, , 199-291.                                                                            |      | 205       |
| 74 | Microscopic Visualization of Nanostructures of Cellulose Derivatives. Macromolecular Symposia, 2005, 223, 253-266.                  | 0.7  | 8         |
| 75 | Novel Nanoparticles Based on Dextran Esters with Unsaturated Moieties. Macromolecular Rapid<br>Communications, 2005, 26, 1908-1912. | 3.9  | 32        |
| 76 | Nanoparticles on the Basis of Highly Functionalized Dextrans. Journal of the American Chemical Society, 2005, 127, 10484-10485.     | 13.7 | 91        |
| 77 | Poly(2-oxazoline) Homopolymers and Diblock Copolymers Containing Retinoate ω-End Groups. ACS<br>Applied Polymer Materials, 0, , .   | 4.4  | 4         |