
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2167911/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adaptation of kernel functionsâ€based approach with Atangana–Baleanu–Caputo distributed order derivative for solutions of fuzzy fractional Volterra and Fredholm integrodifferential equations. Mathematical Methods in the Applied Sciences, 2023, 46, 7807-7834.	2.3	68
2	Reproducing kernel approach for numerical solutions of fuzzy fractional initial value problems under the Mittag–Leffler kernel differential operator. Mathematical Methods in the Applied Sciences, 2023, 46, 7965-7986.	2.3	61
3	The B-spline collocation method for solving conformable initial value problems of non-singular and singular types. AEJ - Alexandria Engineering Journal, 2022, 61, 963-974.	6.4	9
4	The cubic B-spline interpolation method for numerical point solutions of conformable boundary value problems. AEJ - Alexandria Engineering Journal, 2022, 61, 1519-1528.	6.4	15
5	Lie symmetry analysis, explicit solutions, and conservation laws of the time-fractional Fisher equation in two-dimensional space. Journal of Ocean Engineering and Science, 2022, 7, 345-352.	4.3	9
6	A numerical method for solving conformable fractional integrodifferential systems of second-order, two-points periodic boundary conditions. AEJ - Alexandria Engineering Journal, 2022, 61, 5699-5711.	6.4	11
7	A novel analytical algorithm for generalized fifth-order time-fractional nonlinear evolution equations with conformable time derivative arising in shallow water waves. AEJ - Alexandria Engineering Journal, 2022, 61, 5753-5769.	6.4	35
8	The Laplace Optimized Decomposition Method for Solving Systems of Partial Differential Equations of Fractional Order. International Journal of Applied and Computational Mathematics, 2022, 8, 1.	1.6	25
9	Development of the reproducing kernel Hilbert space algorithm for numerical pointwise solution of the time-fractional nonlocal reaction-diffusion equation. AEJ - Alexandria Engineering Journal, 2022, 61, 10539-10550.	6.4	18
10	Analysis of Lie Symmetry, Explicit Series Solutions, and Conservation Laws for the Nonlinear Time-Fractional Phi-Four Equation in Two-Dimensional Space. International Journal of Applied and Computational Mathematics, 2022, 8, .	1.6	19
11	Numerical simulation of telegraph and Cattaneo fractionalâ€ŧype models using adaptive reproducing kernel framework. Mathematical Methods in the Applied Sciences, 2021, 44, 8472-8489.	2.3	49
12	Solving optimal control problems of Fredholm constraint optimality via the reproducing kernel Hilbert space method with error estimates and convergence analysis. Mathematical Methods in the Applied Sciences, 2021, 44, 7915-7932.	2.3	32
13	Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: Theorems and applications. Chaos, Solitons and Fractals, 2021, 146, 110891.	5.1	66
14	Implementation of reproducing kernel Hilbert algorithm for pointwise numerical solvability of fractional Burgers' model in time-dependent variable domain regarding constraint boundary condition of Robin. Results in Physics, 2021, 24, 104210.	4.1	9
15	Reproducing kernel Hilbert pointwise numerical solvability of fractional Sine-Gordon model in time-dependent variable with Dirichlet condition. Physica Scripta, 2021, 96, 104005.	2.5	16
16	The Tikhonov regularization method for the inverse source problem of time fractional heat equation in the view of ABC-fractional technique. Physica Scripta, 2021, 96, 094006.	2.5	90
17	A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations. Chaos, Solitons and Fractals, 2021, 150, 111127.	5.1	69
18	A numerical algorithm in reproducing kernel-based approach for solving the inverse source problem of the time–space fractional diffusion equation. Partial Differential Equations in Applied Mathematics, 2021, 4, 100164.	2.4	22

#	Article	IF	CITATIONS
19	An adaptive numerical approach for the solutions of fractional advection–diffusion and dispersion equations in singular case under Riesz's derivative operator. Physica A: Statistical Mechanics and Its Applications, 2020, 540, 123257.	2.6	46
20	An attractive analytical technique for coupled system of fractional partial differential equations in shallow water waves with conformable derivative. Communications in Theoretical Physics, 2020, 72, 085001.	2.5	81
21	Numerical simulation of time-fractional partial differential equations arising in fluid flows via reproducing Kernel method. International Journal of Numerical Methods for Heat and Fluid Flow, 2020, 30, 4711-4733.	2.8	75
22	Residual Series Representation Algorithm for Solving Fuzzy Duffing Oscillator Equations. Symmetry, 2020, 12, 572.	2.2	51
23	Numerical computations of coupled fractional resonant Schrödinger equations arising in quantum mechanics under conformable fractional derivative sense. Physica Scripta, 2020, 95, 075218.	2.5	94
24	Well-posedness of the inverse problem of time fractional heat equation in the sense of the Atangana-Baleanu fractional approach. AEJ - Alexandria Engineering Journal, 2020, 59, 2261-2268.	6.4	21
25	Solving space-fractional Cauchy problem by modified finite-difference discretization scheme. AEJ - Alexandria Engineering Journal, 2020, 59, 2409-2417.	6.4	10
26	A Numerical Algorithm for the Solutions of ABC Singular Lane–Emden Type Models Arising in Astrophysics Using Reproducing Kernel Discretization Method. Mathematics, 2020, 8, 923.	2.2	74
27	THE REPRODUCING KERNEL ALGORITHM FOR NUMERICAL SOLUTION OF VAN DER POL DAMPING MODEL IN VIEW OF THE ATANGANA–BALEANU FRACTIONAL APPROACH. Fractals, 2020, 28, 2040010.	3.7	88
28	Fuzzy conformable fractional differential equations: novel extended approach and new numerical solutions. Soft Computing, 2020, 24, 12501-12522.	3.6	146
29	Residual Power Series Approach for Solving Linear Fractional Swift-Hohenberg Problems. Lecture Notes in Networks and Systems, 2020, , 33-43.	0.7	2
30	Approximate solutions of nonlinear fractional Kundu-Eckhaus and coupled fractional massive Thirring equations emerging in quantum field theory using conformable residual power series method. Physica Scripta, 2020, 95, 105205.	2.5	86
31	PIECEWISE OPTIMAL FRACTIONAL REPRODUCING KERNEL SOLUTION AND CONVERGENCE ANALYSIS FOR THE ATANGANA–BALEANU–CAPUTO MODEL OF THE LIENARD'S EQUATION. Fractals, 2020, 28, 2040007.	3.7	90
32	NUMERICAL SOLUTIONS OF RIESZ FRACTIONAL DIFFUSION AND ADVECTION-DISPERSION EQUATIONS IN POROUS MEDIA USING ITERATIVE REPRODUCING KERNEL ALGORITHM. Journal of Porous Media, 2020, 23, 783-804.	1.9	43
33	An Attractive Analytic-Numeric Approach for the Solutions of Uncertain Riccati Differential Equations using Residual Power Series. Applied Mathematics and Information Sciences, 2020, 14, 177-190.	0.5	8
34	Soliton Solutions of a Nonlinear Fractional Sasa-Satsuma Equation in Monomode Optical Fibers. Applied Mathematics and Information Sciences, 2020, 14, 365-374.	0.5	18
35	Solutions of Fractional Verhulst Model by Modified Analytical and Numerical Approaches. Forum for Interdisciplinary Mathematics, 2020, , 233-260.	1.6	Ο
36	Adaptation of residual power series method to solve Fredholm fuzzy integro-differential equations. AIP Conference Proceedings, 2019, , .	0.4	10

#	Article	IF	CITATIONS
37	Solving Fuzzy Fractional IVPs of order $2\hat{l}^2$ by Residual Power Series Algorithm. , 2019, , .		2
38	Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC – Fractional Volterra integro-differential equations. Chaos, Solitons and Fractals, 2019, 126, 394-402.	5.1	96
39	Application of Power Series Method for Solving Obstacle Problem of Fractional Order. , 2019, , .		Ο
40	Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense. Chaos, Solitons and Fractals, 2019, 125, 163-170.	5.1	96
41	Application of Residual Power Series Method for the Solution of Time-fractional Schrödinger Equations in One-dimensional Space. Fundamenta Informaticae, 2019, 166, 87-110.	0.4	152
42	Numerical Algorithm for the Solutions of Fractional Order Systems of Dirichlet Function Types with Comparative Analysis. Fundamenta Informaticae, 2019, 166, 111-137.	0.4	125
43	Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates. Applied Mathematics and Computation, 2019, 342, 280-294.	2.2	148
44	Computational algorithm for solving singular Fredholm time-fractional partial integrodifferential equations with error estimates. Journal of Applied Mathematics and Computing, 2019, 59, 227-243.	2.5	81
45	Soft Numerical Algorithm with Convergence Analysis for Time-Fractional Partial IDEs Constrained by Neumann Conditions. Springer Proceedings in Mathematics and Statistics, 2019, , 107-119.	0.2	1
46	APPLICATION OF REPRODUCING KERNEL ALGORITHM FOR SOLVING DIRICHLET TIME-FRACTIONAL DIFFUSION-GORDON TYPES EQUATIONS IN POROUS MEDIA. Journal of Porous Media, 2019, 22, 411-434.	1.9	126
47	Analytical Solutions of Fuzzy Fractional Boundary Value Problem of Order 21± by Using RKHS Algorithm. Applied Mathematics and Information Sciences, 2019, 13, 523-533.	0.5	2
48	Computing bifurcations behavior of mixed type singular time-fractional partial integrodifferential equations of Dirichlet functions types in hilbert space with error analysis. Filomat, 2019, 33, 3845-3853.	0.5	6
49	Multistep Approach for Nonlinear Fractional Bloch System Using Adomian Decomposition Techniques. Springer Proceedings in Mathematics and Statistics, 2019, , 153-171.	0.2	О
50	Numerical solutions of singular time-fractional PDEs. , 2019, , 43-54.		0
51	Fitted Spectral Tau Jacobi Technique for Solving Certain Classes of Fractional Differential Equations,. Applied Mathematics and Information Sciences, 2019, 13, 979-987.	0.5	2
52	Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 828-856.	2.8	159
53	Solutions of Bagley–Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithm with error estimates. Neural Computing and Applications, 2018, 29, 1465-1479.	5.6	59
54	The RKHS method for numerical treatment for integrodifferential algebraic systems of temporal two-point BVPs. Neural Computing and Applications, 2018, 30, 2595-2606.	5.6	105

#	Article	IF	CITATIONS
55	Numerical algorithm for solving timeâ€fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions. Numerical Methods for Partial Differential Equations, 2018, 34, 1577-1597.	3.6	95
56	Solutions of timeâ€fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space. Numerical Methods for Partial Differential Equations, 2018, 34, 1759-1780.	3.6	98
57	Numerical Solutions of Linear Time-fractional Klein-Gordon Equation by Using Power Series Approach. SSRN Electronic Journal, 2018, , .	0.4	1
58	Fuzzy Calculus Theory and Its Applications. Complexity, 2018, 2018, 1-2.	1.6	0
59	Atangana–Baleanu fractional approach to the solutions of Bagley–Torvik and Painlevé equations in Hilbert space. Chaos, Solitons and Fractals, 2018, 117, 161-167.	5.1	141
60	Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana–Baleanu fractional operator. Chaos, Solitons and Fractals, 2018, 117, 117-124.	5.1	128
61	Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm. Calcolo, 2018, 55, 1.	1.1	81
62	Numerical solutions of time-fractional partial integrodifferential equations of Robin functions types in Hilbert space with error bounds and error estimates. Nonlinear Dynamics, 2018, 94, 1819-1834.	5.2	64
63	Modeling and Analyzing Neural Networks Using Reproducing Kernel Hilbert Space Algorithm. Applied Mathematics and Information Sciences, 2018, 12, 89-99.	0.5	8
64	Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Computing and Applications, 2017, 28, 1591-1610.	5.6	308
65	Bifurcations of the time-fractional generalized coupled Hirota-Satsuma KdV system. Waves Wavelets and Fractals, 2017, 3, 31-39.	0.4	13
66	Analytic-numeric treatment for handling system of second-order, three-point BVPs. AIP Conference Proceedings, 2017, , .	0.4	2
67	Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions. Computers and Mathematics With Applications, 2017, 73, 1243-1261.	2.7	128
68	Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Computing, 2017, 21, 7191-7206.	3.6	263
69	A Novel Iterative Numerical Algorithm for the Solutions of Systems of Fuzzy Initial Value Problems. Applied Mathematics and Information Sciences, 2017, 11, 1059-1074.	0.5	5
70	The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations. Mathematical Methods in the Applied Sciences, 2016, 39, 4549-4562.	2.3	96
71	Approximate Solutions of DASs with Nonclassical Boundary Conditions using Novel Reproducing Kernel Algorithm. Fundamenta Informaticae, 2016, 146, 231-254.	0.4	52
72	Numerical investigations for systems of second-order periodic boundary value problems using reproducing kernel method. Applied Mathematics and Computation, 2016, 291, 137-148.	2.2	71

#	Article	IF	CITATIONS
73	Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Computing, 2016, 20, 3283-3302.	3.6	292
74	Analytical Approximations of Partial Differential Equations of Fractional Order with Multistep Approach. Journal of Computational and Theoretical Nanoscience, 2016, 13, 7793-7801.	0.4	32
75	Analytical Simulation of Singular Second-Order, Three Points Boundary Value Problems for Fredholm Operator Using Computational Kernel Algorithm. Journal of Computational and Theoretical Nanoscience, 2016, 13, 7816-7824.	0.4	4
76	An Efficient Analytical Method for Solving Singular Initial Value Problems of Nonlinear Systems. Applied Mathematics and Information Sciences, 2016, 10, 647-656.	0.5	43
77	A Residual Power Series Technique for Solving Systems of Initial Value Problems. Applied Mathematics and Information Sciences, 2016, 10, 765-775.	0.5	12
78	An Efficient Computational Method for Handling Singular Second-Order, Three Points Volterra Integrodifferential Equations. Journal of Computational and Theoretical Nanoscience, 2016, 13, 7807-7815.	0.4	3
79	Existence, Uniqueness, and Characterization Theorems for Nonlinear Fuzzy Integrodifferential Equations of Volterra Type. Mathematical Problems in Engineering, 2015, 2015, 1-13.	1.1	16
80	Reproducing Kernel Algorithm for the Analytical-Numerical Solutions of Nonlinear Systems of Singular Periodic Boundary Value Problems. Mathematical Problems in Engineering, 2015, 2015, 1-13.	1.1	19
81	A novel expansion iterative method for solving linear partial differential equations of fractional order. Applied Mathematics and Computation, 2015, 257, 119-133.	2.2	107
82	A general form of the generalized Taylor's formula with some applications. Applied Mathematics and Computation, 2015, 256, 851-859.	2.2	88
83	Approximate analytical solution of the nonlinear fractional KdV–Burgers equation: A new iterative algorithm. Journal of Computational Physics, 2015, 293, 81-95.	3.8	212
84	Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations. Journal of Computational Physics, 2015, 293, 385-399.	3.8	126
85	Numerical Simulation for Fuzzy Fredholm Integral Equations Using Reproducing Kernel Algorithm. , 2015, , .		1
86	Iterative Multistep Reproducing Kernel Hilbert Space Method for Solving Strongly Nonlinear Oscillators. Advances in Mathematical Physics, 2014, 2014, 1-7.	0.8	11
87	A Numerical Iterative Method for Solving Systems of First-Order Periodic Boundary Value Problems. Journal of Applied Mathematics, 2014, 2014, 1-10.	0.9	33
88	Optimization Solution of Troesch's and Bratu's Problems of Ordinary Type Using Novel Continuous Genetic Algorithm. Discrete Dynamics in Nature and Society, 2014, 2014, 1-15.	0.9	126
89	Multiple Solutions of Nonlinear Boundary Value Problems of Fractional Order: A New Analytic Iterative Technique. Entropy, 2014, 16, 471-493.	2.2	71
90	Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations. Applied Mathematics and Computation, 2014, 243, 911-922.	2.2	85

#	Article	IF	CITATIONS
91	Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm. Information Sciences, 2014, 279, 396-415.	6.9	386
92	A computational method for solving periodic boundary value problems for integro-differential equations of Fredholm–Volterra type. Applied Mathematics and Computation, 2014, 240, 229-239.	2.2	41
93	Application of Continuous Genetic Algorithm for Nonlinear System of Second-Order Boundary Value Problems. Applied Mathematics and Information Sciences, 2014, 8, 235-248.	0.5	26
94	An Optimization Algorithm for Solving Systems of Singular Boundary Value Problems. Applied Mathematics and Information Sciences, 2014, 8, 2809-2821.	0.5	88
95	Solving Fredholm integro–differential equations using reproducing kernel Hilbert space method. Applied Mathematics and Computation, 2013, 219, 8938-8948.	2.2	118
96	Solving fractional two-point boundary value problems using continuous analytic method. Ain Shams Engineering Journal, 2013, 4, 539-547.	6.1	26
97	Solution of the fractional epidemic model by homotopy analysis method. Journal of King Saud University - Science, 2013, 25, 73-81.	3.5	132
98	A Representation of the Exact Solution of Generalized Lane-Emden Equations Using a New Analytical Method. Abstract and Applied Analysis, 2013, 2013, 1-10.	0.7	95
99	A Computational Method for Two-Point Boundary Value Problems of Fourth-Order Mixed Integrodifferential Equations. Mathematical Problems in Engineering, 2013, 2013, 1-10.	1.1	63
100	New Results on Fractional Power Series: Theories and Applications. Entropy, 2013, 15, 5305-5323.	2.2	161
101	Analytical Solutions of Fuzzy Initial Value Problems by HAM. Applied Mathematics and Information Sciences, 2013, 7, 1903-1919.	0.5	36
102	A Reliable Analytical Method for Solving Higher-Order Initial Value Problems. Discrete Dynamics in Nature and Society, 2013, 2013, 1-12.	0.9	58
103	A Genetic Algorithm Approach for Prediction of Linear Dynamical Systems. Mathematical Problems in Engineering, 2013, 2013, 1-12.	1.1	1,476
104	Series Solution of Fuzzy Differential Equations under Strongly Generalized Differentiability. Journal of Advanced Research in Applied Mathematics, 2013, 5, 31-52.	0.1	174
105	Solving Singular Two-Point Boundary Value Problems Using Continuous Genetic Algorithm. Abstract and Applied Analysis, 2012, 2012, 1-25.	0.7	75
106	Application of Reproducing Kernel Method for Solving Nonlinear Fredholm-Volterra Integrodifferential Equations. Abstract and Applied Analysis, 2012, 2012, 1-16.	0.7	49
107	Homotopy Analysis Method for Second-Order Boundary Value Problems of Integrodifferential Equations. Discrete Dynamics in Nature and Society, 2012, 2012, 1-18.	0.9	29
108	Solutions of Volterra Singular Time-Fractional PIDEs. SSRN Electronic Journal, 0, , .	0.4	0