Felipe E Albornoz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2167670/publications.pdf

Version: 2024-02-01

758635 940134 16 620 12 16 h-index citations g-index papers 17 17 17 971 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus-impoverished hyperdiverse ecosystems. Plant and Soil, 2018, 424, 11-33.	1.8	149
2	Greater root phosphatase activity in nitrogenâ€fixing rhizobial but not actinorhizal plants with declining phosphorus availability. Journal of Ecology, 2017, 105, 1246-1255.	1.9	77
3	Nucleation-driven regeneration promotes post-fire recovery in a Chilean temperate forest. Plant Ecology, 2013, 214, 765-776.	0.7	61
4	The role of soil chemistry and plant neighbourhoods in structuring fungal communities in three Panamanian rainforests. Journal of Ecology, 2017, 105, 569-579.	1.9	55
5	Native soilborne pathogens equalize differences in competitive ability between plants of contrasting nutrientâ€acquisition strategies. Journal of Ecology, 2017, 105, 549-557.	1.9	52
6	Revisiting mycorrhizal dogmas: Are mycorrhizas really functioning as they are widely believed to do?. Soil Ecology Letters, 2021, 3, 73-82.	2.4	38
7	Changes in ectomycorrhizal fungal community composition and declining diversity along a 2â€millionâ€year soil chronosequence. Molecular Ecology, 2016, 25, 4919-4929.	2.0	35
8	Shifts in symbiotic associations in plants capable of forming multiple root symbioses across a longâ€ŧerm soil chronosequence. Ecology and Evolution, 2016, 6, 2368-2377.	0.8	33
9	Differences in investment and functioning of cluster roots account for different distributions of Banksia attenuata and B. sessilis, with contrasting life history. Plant and Soil, 2020, 447, 85-98.	1.8	21
10	Agricultural landâ€use favours Mucoromycotinian, but not Glomeromycotinian, arbuscular mycorrhizal fungi across ten biomes. New Phytologist, 2022, 233, 1369-1382.	3.5	19
11	Evidence for Niche Differentiation in the Environmental Responses of Co-occurring Mucoromycotinian Fine Root Endophytes and Glomeromycotinian Arbuscular Mycorrhizal Fungi. Microbial Ecology, 2021, 81, 864-873.	1.4	17
12	First Cryo-Scanning Electron Microscopy Images and X-Ray Microanalyses of Mucoromycotinian Fine Root Endophytes in Vascular Plants. Frontiers in Microbiology, 2020, 11, 2018.	1.5	16
13	Ecological interactions among microbial functional guilds in the plant-soil system and implications for ecosystem function. Plant and Soil, 2022, 476, 301-313.	1.8	14
14	A New Oomycete Metabarcoding Method Using the <i>rps10</i> Gene. Phytobiomes Journal, 2022, 6, 214-226.	1.4	12
15	Co-occurring Fungal Functional Groups Respond Differently to Tree Neighborhoods and Soil Properties Across Three Tropical Rainforests in Panama. Microbial Ecology, 2020, 79, 675-685.	1.4	11
16	Mycorrhizal symbiosis and phosphorus supply determine interactions among plants with contrasting nutrientâ€acquisition strategies. Journal of Ecology, 2021, 109, 3892-3902.	1.9	10