Tianbo Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2167588/publications.pdf Version: 2024-02-01

Τιλιβο Υμ

#	Article	lF	CITATIONS
1	Transitions in mechanical behavior and in deformation mechanisms enhance the strength and ductility of Mg-3Gd. Acta Materialia, 2020, 183, 398-407.	7.9	136
2	Laminated Ti-Al composites: Processing, structure and strength. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 673, 572-580.	5.6	92
3	Recovery by triple junction motion in aluminium deformed to ultrahigh strains. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467, 3039-3065.	2.1	72
4	Enhanced strength in pure Ti via design of alternating coarse- and fine-grain layers. Acta Materialia, 2021, 206, 116627.	7.9	62
5	Linking recovery and recrystallization through triple junction motion in aluminum cold rolled to a large strain. Acta Materialia, 2013, 61, 6577-6586.	7.9	50
6	In situ observation of triple junction motion during recovery of heavily deformed aluminum. Acta Materialia, 2015, 86, 269-278.	7.9	43
7	Observation of a New Mechanism Balancing Hardening and Softening in Metals. Materials Research Letters, 2014, 2, 160-165.	8.7	34
8	In-situ synchrotron X-ray micro-diffraction investigation of ultra-low-strain deformation microstructure in laminated Ti-Al composites. Acta Materialia, 2021, 202, 149-158.	7.9	27
9	Recovery mechanisms in nanostructured aluminium. Philosophical Magazine, 2012, 92, 4056-4074.	1.6	22
10	Characterization and influence of deformation microstructure heterogeneity on recrystallization. IOP Conference Series: Materials Science and Engineering, 2015, 89, 012003.	0.6	22
11	Coarsening kinetics of fine-scale microstructures in deformed materials. Acta Materialia, 2016, 120, 40-45.	7.9	19
12	3D characterization of partially recrystallized Al using high resolution diffraction contrast tomography. Scripta Materialia, 2018, 157, 72-75.	5.2	17
13	Microstructural evolution in Mg-3Gd during accumulative roll-bonding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138763.	5.6	13
14	Local residual stresses and microstructure within recrystallizing grains in iron. Materials Characterization, 2022, 191, 112113.	4.4	13
15	Segregation and precipitation stabilizing an ultrafine lamellar-structured Al-0.3%Cu alloy. Acta Materialia, 2021, 206, 116595.	7.9	12
16	Effects of interface roughness on the annealing behaviour of laminated Ti-Al composite deformed by hot rolling. IOP Conference Series: Materials Science and Engineering, 2015, 89, 012021.	0.6	11
17	Fatigue behaviors and damage mechanism of a Cr-Mn-N austenitic steel. Journal of Alloys and Compounds, 2017, 691, 103-109.	5.5	11
18	Strong pinning of triple junction migration for robust high strain nanostructures. Philosophical Magazine, 2019, 99, 869-886.	1.6	11

Τιάνβο Υυ

#	Article	IF	CITATIONS
19	Recovery Kinetics in Commercial Purity Aluminum Deformed to Ultrahigh Strain: Model and Experiment. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 4189-4196.	2.2	9
20	Quantification of microstructure in a eutectic high entropy alloy AlCoCrFeNi _{2.1} . IOP Conference Series: Materials Science and Engineering, 2019, 580, 012039.	0.6	8
21	Microstructure and Texture Evolution During Cold Rolling of 316L Stainless Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 4100-4111.	2.2	8
22	Pt-20Rh dispersion strengthened by ZrO2 - Microstructure and strength. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 765, 138305.	5.6	7
23	An electron microscopy study of microstructural evolution during in-situ annealing of heavily deformed nickel. Materials Letters, 2017, 186, 102-104.	2.6	6
24	Triple Junction Motion – A New Recovery Mechanism in Metals Deformed to Large Strains. Materials Science Forum, 0, 753, 485-488.	0.3	5
25	Particle stabilization of plastic flow in nanostructured Al-1Â%Si Alloy. Journal of Materials Science, 2014, 49, 6667-6673.	3.7	5
26	Structure restoration and coarsening of nanocrystalline cementite in cold drawn pearlitic wire induced by low temperature annealing. Scripta Materialia, 2022, 215, 114696.	5.2	5
27	EBSD-Based Techniques for Characterization of Microstructural Restoration Processes during Annealing of Metals Deformed to Large Plastic Strains. Materials Science Forum, 2012, 715-716, 203-210.	0.3	3
28	Evolution of microstructure and texture during recovery and recrystallization in heavily rolled aluminum. IOP Conference Series: Materials Science and Engineering, 2015, 82, 012083.	0.6	3
29	Recovery by triple junction motion in heavily deformed metals. IOP Conference Series: Materials Science and Engineering, 2015, 89, 012014.	0.6	3
30	A Model for Recovery Kinetics of Aluminum after Large Strain. Materials Science Forum, 2012, 715-716, 374-379.	0.3	2
31	In Situ Synchrotron X-ray Micro-Diffraction Investigation of Elastic Strains in Laminated Ti-Al Composites. Metals, 2021, 11, 668.	2.3	2
32	Coupling of Local Texture and Microstructure Evolution during Restoration Processes in Aluminum Deformed to Large Strains. Materials Science Forum, 2013, 753, 251-256.	0.3	0
33	Microstructure and strength of weldment in Pt20Rh alloys dispersion-strengthened by ZrO2 particles. IOP Conference Series: Materials Science and Engineering, 2019, 580, 012035.	0.6	0