Boris F Krasnikov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2167357/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The metabolic importance of the glutaminase II pathway in normal and cancerous cells. Analytical Biochemistry, 2022, 644, 114083.	2.4	11
2	A novel efficient producer of human ω-amidase (Nit2) in Escherichia coli. Analytical Biochemistry, 2021, 632, 114332.	2.4	1
3	Preparative Biocatalytic Synthesis of α-Ketoglutaramate. International Journal of Molecular Sciences, 2021, 22, 12748.	4.1	5
4	Changes of Coenzyme A and Acetyl-Coenzyme A Concentrations in Rats after a Single-Dose Intraperitoneal Injection of Hepatotoxic Thioacetamide Are Not Consistent with Rapid Recovery. International Journal of Molecular Sciences, 2020, 21, 8918.	4.1	10
5	Real-time multiparameter study of mitochondrial functions: Instrumental and analytical approaches. Analytical Biochemistry, 2018, 552, 66-74.	2.4	1
6	Models, methods, and approaches to study mitochondrial functioning in vitro , in situ , and in vivo : Editorial for the special issue on Mitochondrial Biochemistry and Bioenergetics. Analytical Biochemistry, 2018, 552, 1-3.	2.4	1
7	Determination of Coenzyme A and Acetyl-Coenzyme A in Biological Samples Using HPLC with UV Detection. Molecules, 2017, 22, 1388.	3.8	53
8	The Enzymology of 2-Hydroxyglutarate, 2-Hydroxyglutaramate and 2-Hydroxysuccinamate and Their Relationship to Oncometabolites. Biology, 2017, 6, 24.	2.8	13
9	Simultaneous determination of tricarboxylic acid cycle metabolites by high-performance liquid chromatography with ultraviolet detection. Analytical Biochemistry, 2016, 503, 8-10.	2.4	16
10	HPLC determination of α-ketoglutaramate [5-amino-2,5-dioxopentanoate] in biological samples. Analytical Biochemistry, 2016, 494, 52-54.	2.4	9
11	ï‰-Amidase: an underappreciated, but important enzyme in l-glutamine and l-asparagine metabolism; relevance to sulfur and nitrogen metabolism, tumor biology and hyperammonemic diseases. Amino Acids, 2016, 48, 1-20.	2.7	56
12	Role of Glutamine Transaminases in Nitrogen, Sulfur, Selenium, and 1-Carbon Metabolism. , 2015, , 37-54.		7
13	Kynurenine Aminotransferase III and Glutamine Transaminase L Are Identical Enzymes that have Cysteine S-Conjugate β-Lyase Activity and Can Transaminate I-Selenomethionine. Journal of Biological Chemistry, 2014, 289, 30950-30961.	3.4	36
14	Cysteine S-conjugate β-lyases: important roles in the metabolism of naturally occurring sulfur and selenium-containing compounds, xenobiotics and anticancer agents. Amino Acids, 2011, 41, 7-27.	2.7	89
15	Urinary 2-hydroxy-5-oxoproline, the lactam form of α-ketoglutaramate, is markedly increased in urea cycle disorders. Analytical and Bioanalytical Chemistry, 2011, 400, 1843-1851.	3.7	29
16	Synthetic and natural polyanions induce cytochrome c release from mitochondria in vitro and in situ. American Journal of Physiology - Cell Physiology, 2011, 300, C1193-C1203.	4.6	9
17	Measurement of sulfur-containing compounds involved in the metabolism and transport of cysteamine and cystamine. Regional differences in cerebral metabolism. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 3434-3441.	2.3	36
18	Assay and purification of ω-amidase/Nit2, a ubiquitously expressed putative tumor suppressor, that catalyzes the deamidation of the α-keto acid analogues of glutamine and asparagine. Analytical Biochemistry, 2009, 391, 144-150.	2.4	32

#	Article	IF	CITATIONS
19	Identification of the putative tumor suppressor Nit2 as ω-amidase, an enzyme metabolically linked to glutamine and asparagine transamination. Biochimie, 2009, 91, 1072-1080.	2.6	48
20	Treatment of YAC128 mice and their wild-type littermates with cystamine does not lead to its accumulation in plasma or brain: implications for the treatment of Huntington disease. Journal of Neurochemistry, 2005, 94, 1087-1101.	3.9	52