Shikai Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2167344/publications.pdf

Version: 2024-02-01

		1163117	1199594	
13	246	8	12	
papers	citations	h-index	g-index	
16	16	16	384	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Exploring the folding energy landscapes of heme proteins using a hybrid AWSEM-heme model. Journal of Biological Physics, 2022, 48, 37-53.	1.5	3
2	OpenAWSEM with Open3SPN2: A fast, flexible, and accessible framework for large-scale coarse-grained biomolecular simulations. PLoS Computational Biology, 2021, 17, e1008308.	3.2	31
3	Exploring the Translocation Mechanism of Bacteriophage T7 Helicase. Biophysical Journal, 2021, 120, 32a-33a.	0.5	0
4	AWSEM-Suite: a protein structure prediction server based on template-guided, coevolutionary-enhanced optimized folding landscapes. Nucleic Acids Research, 2020, 48, W25-W30.	14.5	18
5	Protein Structure Refinement Guided by Atomic Packing Frustration Analysis. Journal of Physical Chemistry B, 2020, 124, 10889-10898.	2.6	5
6	Protein Structure Prediction in CASP13 Using AWSEM-Suite. Journal of Chemical Theory and Computation, 2020, 16, 3977-3988.	5.3	15
7	Molecular-replacement phasing using predicted protein structures from <i>AWSEM-Suite</i> . IUCrJ, 2020, 7, 1168-1178.	2.2	10
8	Forging tools for refining predicted protein structures. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9400-9409.	7.1	15
9	Structural insights into the nuclear import of the histone acetyltransferase malesâ€absentâ€onâ€theâ€first by importin α1. Traffic, 2018, 19, 19-28.	2.7	6
10	Identification of an Oleanane-Type Triterpene Hedragonic Acid as a Novel Farnesoid X Receptor Ligand with Liver Protective Effects and Anti-inflammatory Activity. Molecular Pharmacology, 2018, 93, 63-72.	2.3	26
11	A Novel Class of Natural FXR Modulators with a Unique Mode of Selective Coâ€regulator Assembly. ChemBioChem, 2017, 18, 721-725.	2.6	15
12	Factors and pathways involved in capacitation: how are they regulated?. Oncotarget, 2017, 8, 3600-3627.	1.8	81
13	Revealing a natural marine product as a novel agonist for retinoic acid receptors with a unique binding mode and inhibitory effects on cancer cells. Biochemical Journal, 2012, 446, 79-87.	3.7	21