Isao Yumoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2167297/publications.pdf

Version: 2024-02-01

76326 155660 4,137 134 40 55 citations h-index g-index papers 142 142 142 3825 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dietzia psychralcaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons International Journal of Systematic and Evolutionary Microbiology, 2002, 52, 85-90.	1.7	148
2	Isolation and Characterization of Novel Strains of Pseudomonas aeruginosa and Serratia marcescens Possessing High Efficiency to Degrade Gasoline, Kerosene, Diesel Oil, and Lubricating Oil. Current Microbiology, 2004, 49, 415-422.	2.2	133
3	Isolation of Acetogenic Bacteria That Induce Biocorrosion by Utilizing Metallic Iron as the Sole Electron Donor. Applied and Environmental Microbiology, 2015, 81, 67-73.	3.1	129
4	Antifreeze proteins from snow mold fungi. Canadian Journal of Botany, 2003, 81, 1175-1181.	1.1	108
5	Purification and Characterization of a Catalase from the Facultatively Psychrophilic Bacterium Vibrio rumoiensis S-1 T Exhibiting High Catalase Activity. Journal of Bacteriology, 2000, 182, 1903-1909.	2.2	106
6	Exiguobacterium oxidotolerans sp. nov., a novel alkaliphile exhibiting high catalase activity. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 2013-2017.	1.7	86
7	Alkalibacterium psychrotolerans sp. nov., a psychrotolerant obligate alkaliphile that reduces an indigo dye. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 2379-2383.	1.7	86
8	Isolation and characterization of bacteria from soil contaminated with diesel oil and the possible use of these in autochthonous bioaugmentation. World Journal of Microbiology and Biotechnology, 2007, 23, 1739-1745.	3.6	86
9	Psychrobacter okhotskensis sp. nov., a lipase-producing facultative psychrophile isolated from the coast of the Okhotsk Sea. International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 1985-1989.	1.7	84
10	Degradation of long-chain n-alkanes (C36 and C40) by Pseudomonas aeruginosa strain WatG. International Biodeterioration and Biodegradation, 2007, 59, 40-43.	3.9	82
11	Characterization of a Facultatively Psychrophilic Bacterium, <i>Vibrio rumoiensis</i> sp. nov., That Exhibits High Catalase Activity. Applied and Environmental Microbiology, 1999, 65, 67-72.	3.1	79
12	Bacillus krulwichiae sp. nov., a halotolerant obligate alkaliphile that utilizes benzoate and m-hydroxybenzoate. International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 1531-1536.	1.7	76
13	Oceanobacillus oncorhynchi sp. nov., a halotolerant obligate alkaliphile isolated from the skin of a rainbow trout (Oncorhynchus mykiss), and emended description of the genus Oceanobacillus. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 1521-1524.	1.7	67
14	Alkalibacterium iburiense sp. nov., an obligate alkaliphile that reduces an indigo dye. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 1525-1530.	1.7	67
15	Culture-Dependent and -Independent Identification of Polyphosphate-Accumulating & lt;i>Dechloromonas spp. Predominating in a Full-Scale Oxidation Ditch Wastewater Treatment Plant. Microbes and Environments, 2016, 31, 449-455.	1.6	64
16	Efficient Colonization of the Bean Bug Riptortus pedestris by an Environmentally Transmitted Burkholderia Symbiont. Applied and Environmental Microbiology, 2013, 79, 2088-2091.	3.1	63
17	Thiovirga sulfuroxydans gen. nov., sp. nov., a chemolithoautotrophic sulfur-oxidizing bacterium isolated from a microaerobic waste-water biofilm. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 1059-1064.	1.7	62
18	Alkalibacterium indicireducens sp. nov., an obligate alkaliphile that reduces indigo dye. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 901-905.	1.7	62

#	Article	IF	CITATIONS
19	Methanogenic degradation of lignin-derived monoaromatic compounds by microbial enrichments from rice paddy field soil. Scientific Reports, 2015, 5, 14295.	3.3	62
20	Isolation of a Pseudomonas species from fish intestine that produces a protease active at low temperature. Letters in Applied Microbiology, 1997, 25, 70-72.	2.2	59
21	Isolation of Butanol- and Isobutanol-Tolerant Bacteria and Physiological Characterization of Their Butanol Tolerance. Applied and Environmental Microbiology, 2013, 79, 6998-7005.	3.1	59
22	Bioenergetics of alkaliphilic Bacillus spp Journal of Bioscience and Bioengineering, 2002, 93, 342-353.	2.2	55
23	Title is missing!. Biotechnology Letters, 1999, 21, 939-945.	2.2	54
24	Verification of Degradation of n-Alkanes in Diesel Oil by Pseudomonas aeruginosa Strain WatG in Soil Microcosms. Current Microbiology, 2006, 52, 182-185.	2.2	54
25	Relationship between the Size of the Bottleneck 15 Å from Iron in the Main Channel and the Reactivity of Catalase Corresponding to the Molecular Size of Substrates‡. Biochemistry, 2007, 46, 11-22.	2.5	54
26	Bacterial community characterization and dynamics of indigo fermentation. FEMS Microbiology Ecology, 2010, 74, 174-183.	2.7	53
27	Bacillus asahii sp. nov., a novel bacterium isolated from soil with the ability to deodorize the bad smell generated from short-chain fatty acids. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 1997-2001.	1.7	52
28	Direct fermentation of starch to L-(+)-lactic acid using Lactobacillus amylophilus. Biotechnology Letters, 1995, 17, 543-546.	2.2	51
29	Glaciecola chathamensis sp. nov., a novel marine polysaccharide-producing bacterium. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 2883-2886.	1.7	51
30	Bacillus oshimensis sp. nov., a moderately halophilic, non-motile alkaliphile. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 907-911.	1.7	51
31	Anoxybacillus voinovskiensis sp. nov., a moderately thermophilic bacterium from a hot spring in Kamchatka. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 1239-1242.	1.7	50
32	Oceanobacillus indicireducens sp. nov., a facultative alkaliphile that reduces an indigo dye. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 1437-1442.	1.7	50
33	Purification and Characterization of Catalase from a Facultative Alkalophilic Bacillus1. Journal of Biochemistry, 1990, 108, 583-587.	1.7	48
34	Microbacterium kitamiense sp. nov., a new polysaccharide-producing bacterium isolated from the wastewater of a sugar-beet factory. International Journal of Systematic and Evolutionary Microbiology, 1999, 49, 1353-1357.	1.7	46
35	Sphingobacterium kitahiroshimense sp. nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 1576-1579.	1.7	44
36	Physiological and Transcriptomic Analyses of the Thermophilic, Aceticlastic Methanogen <i>Methanosaeta thermophila</i> Responding to Ammonia Stress. Microbes and Environments, 2014, 29, 162-167.	1.6	44

#	Article	IF	CITATIONS
37	Isolation, Identification, and Characterization of a Novel, Oil-Degrading Bacterium, Pseudomonas aeruginosa T1. Current Microbiology, 2004, 49, 108-14.	2.2	43
38	Shewanella pneumatophori sp. nov., an eicosapentaenoic acid-producing marine bacterium isolated from the intestines of Pacific mackerel (Pneumatophorus japonicus). International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 2355-2359.	1.7	43
39	Assignment of Pseudomonas sp. strain E-3 to Pseudomonas psychrophila sp. nov., a new facultatively psychrophilic bacterium. Extremophiles, 2001, 5, 343-349.	2.3	42
40	Bacillus polygoni sp. nov., a moderately halophilic, non-motile obligate alkaliphile isolated from indigo balls. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 120-124.	1.7	42
41	Calditerricola satsumensis gen. nov., sp. nov. and Calditerricola yamamurae sp. nov., extreme thermophiles isolated from a high-temperature compost. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 631-636.	1.7	42
42	Microbial Communities Associated With Indigo Fermentation That Thrive in Anaerobic Alkaline Environments. Frontiers in Microbiology, 2018, 9, 2196.	3 . 5	38
43	Cytochrome c and bioenergetic hypothetical model for alkaliphilic Bacillus spp Journal of Bioscience and Bioengineering, 2005, 100, 365-379.	2.2	33
44	A Novel aco-Type Cytochrome-c Oxidase from a Facultative Alkalophilic Bacillus: Purification, and Some Molecular and Enzymatic Features1. Journal of Biochemistry, 1990, 107, 480-485.	1.7	32
45	Amphibacillus iburiensis sp. nov., an alkaliphile that reduces an indigo dye. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 4303-4308.	1.7	32
46	Psychromonas marina sp. nov., a novel halophilic, facultatively psychrophilic bacterium isolated from the coast of the Okhotsk Sea International Journal of Systematic and Evolutionary Microbiology, 2002, 52, 1455-1459.	1.7	32
47	Fermentibacillus polygoni gen. nov., sp. nov., an alkaliphile that reduces indigo dye. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 2247-2253.	1.7	32
48	Pseudomonas toyotomiensis sp. nov., a psychrotolerant facultative alkaliphile that utilizes hydrocarbons. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 1842-1848.	1.7	31
49	Purification and Characterization of Two Membrane-Bound c-Type Cytochromes from a Facultative Alkalophilic Bacillus. Journal of Biochemistry, 1991, 110, 267-273.	1.7	30
50	Alteromonas gracilis sp. nov., a marine polysaccharide-producing bacterium. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 1498-1503.	1.7	30
51	Oceanobacillus polygoni sp. nov., a facultatively alkaliphile isolated from indigo fermentation fluid. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 3307-3312.	1.7	29
52	Amphibacillus indicireducens sp. nov., an alkaliphile that reduces an indigo dye. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 464-469.	1.7	29
53	Pseudoalteromonas shioyasakiensis sp. nov., a marine polysaccharide-producing bacterium. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 101-106.	1.7	29
54	Polygonibacillus indicireducens gen. nov., sp. nov., an indigo-reducing and obligate alkaliphile isolated from indigo fermentation liquor for dyeing. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 4650-4656.	1.7	29

#	Article	IF	Citations
55	The Impact of Aridification and Vegetation Type on Changes in the Community Structure of Methane-Cycling Microorganisms in Japanese Wetland Soils. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1727-1734.	1.3	27
56	Brevibacillus nitrificans sp. nov., a nitrifying bacterium isolated from a microbiological agent for enhancing microbial digestion in sewage treatment tanks. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 2121-2126.	1.7	27
57	A Mechanism of Resistance to Hydrogen Peroxide in <i>Vibrio rumoiensis</i> S-1. Applied and Environmental Microbiology, 1999, 65, 73-79.	3.1	27
58	The Molecular Features and Catalytic Activity of CuA-Containing aco3 -Type Cytochrome c Oxidase from a Facultative Alkalophilic Bacillus. Journal of Biochemistry, 1993, 114, 88-95.	1.7	26
59	Psychrobacter piscatorii sp. nov., a psychrotolerant bacterium exhibiting high catalase activity isolated from an oxidative environment. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 205-208.	1.7	26
60	Gracilibacillus alcaliphilus sp. nov., a facultative alkaliphile isolated from indigo fermentation liquor for dyeing. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 3174-3180.	1.7	26
61	Overexpressed Superoxide Dismutase and Catalase Act Synergistically to Protect the Repair of PSII during Photoinhibition in <i>Synechococcus elongatus</i> PCC 7942. Plant and Cell Physiology, 2016, 57, 1899-1907.	3.1	26
62	Identification of facultatively alkaliphilic Bacillus sp. strain YN-2000 and its fatty acid composition and cell-surface aspects depending on culture pH. Extremophiles, 2000, 4, 285-290.	2.3	24
63	Enhancement of the nitrogen fixation efficiency of genetically-engineered Rhizobium with high catalase activity. Journal of Bioscience and Bioengineering, 2010, 110, 397-402.	2.2	24
64	Rhodococcus tukisamuensis sp. nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 1333-1337.	1.7	23
65	The effects of elevated CO2 concentration on competitive interaction between aceticlastic and syntrophic methanogenesis in a model microbial consortium. Frontiers in Microbiology, 2014, 5, 575.	3.5	23
66	Isolation of Vibrio sp. S-1 exhibiting extraordinarily high catalase activity. Journal of Bioscience and Bioengineering, 1998, 85, 113-116.	0.9	22
67	Temperature and nutrient availability control growth rate and fatty acid composition of facultatively psychrophilic Cobetia marina strain L-2. Archives of Microbiology, 2004, 181, 345-351.	2.2	22
68	Production of two types of exopolysaccharide by novosphingobium rosa. Journal of Bioscience and Bioengineering, 2003, 95, 152-156.	2.2	21
69	Effects of H2O2 under Low- and High-Aeration-Level Conditions on Growth and Catalase Activity in Exiguobacterium oxidotolerans T-2-2T. Journal of Bioscience and Bioengineering, 2007, 104, 464-469.	2.2	21
70	Pseudoalteromonas arabiensis sp. nov., a marine polysaccharide-producing bacterium. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 1805-1809.	1.7	21
71	Bacterial community changes in diesel-oil-contaminated soil microcosms biostimulated with Luria–Bertani medium or bioaugmented with a petroleum-degrading bacterium,Pseudomonas aeruginosa strain WatG. Journal of Basic Microbiology, 2006, 46, 310-317.	3.3	20
72	Analysis of microbiota involved in the aged natural fermentation of indigo. World Journal of Microbiology and Biotechnology, 2017, 33, 70.	3.6	20

#	Article	IF	Citations
73	Paralkalibacillus indicireducens gen., nov., sp. nov., an indigo-reducing obligate alkaliphile isolated from indigo fermentation liquor used for dyeing. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 4050-4056.	1.7	19
74	Crystal structure of saltâ€tolerant glutaminase from <i>Micrococcus luteus</i> Kâ€3 in the presence and absence of its product <scp>l</scp> â€glutamate and its activator Tris. FEBS Journal, 2010, 277, 738-748.	4.7	18
75	Bioenergetics and the Role of Soluble Cytochromes <i>c</i> for Alkaline Adaptation in Gram-Negative Alkaliphilic <i>Pseudomonas</i> . BioMed Research International, 2015, 2015, 1-14.	1.9	18
76	Bacillus fermenti sp. nov., an indigo-reducing obligate alkaliphile isolated from indigo fermentation liquor for dyeing. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 1123-1129.	1.7	18
77	Comparative study on cytochrome content of alkaliphilic Bacillus strains. Journal of Bioscience and Bioengineering, 1997, 83, 466-469.	0.9	17
78	Acinetobacter sp. strain Ths, a novel psychrotolerant and alkalitolerant bacterium that utilizes hydrocarbon. Extremophiles, 2008, 12, 729-734.	2.3	17
79	Psychrobacter oceani sp. nov., isolated from marine sediment. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 1450-1455.	1.7	17
80	Characterization of Catalase from Psychrotolerant Psychrobacter piscatorii T-3 Exhibiting High Catalase Activity. International Journal of Molecular Sciences, 2012, 13, 1733-1746.	4.1	16
81	Title is missing!. Biotechnology Letters, 2000, 22, 183-187.	2.2	15
82	Heme content of recombinant catalase from Psychrobacter sp. T-3 altered by host Escherichia coli cell growth conditions. Protein Expression and Purification, 2008, 59, 357-359.	1.3	15
83	Paenibacillus macquariensis subsp. defensor subsp. nov., isolated from boreal soil. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 2074-2079.	1.7	15
84	Vibrio aphrogenes sp. nov., in the Rumoiensis clade isolated from a seaweed. PLoS ONE, 2017, 12, e0180053.	2.5	15
85	Formation of Proton Motive Force Under Low-Aeration Alkaline Conditions in Alkaliphilic Bacteria. Frontiers in Microbiology, 2018, 9, 2331.	3.5	15
86	Characterization of the microbiota in long- and short-term natural indigo fermentation. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 1657-1667.	3.0	15
87	Enhanced heterologous production of eicosapentaenoic acid in Escherichia coli cells that co-express eicosapentaenoic acid biosynthesis pfa genes and foreign DNA fragments including a high-performance catalase gene, vktA. Biotechnology Letters, 2007, 29, 803-809.	2.2	14
88	Possible Biosynthetic Pathways for all <i>cis</i> i>â€3,6,9,12,15,19,22,25,28â€Hentriacontanonaene in Bacteria. Lipids, 2010, 45, 167-177.	1.7	14
89	The Combination of Functional Metagenomics and an Oil-Fed Enrichment Strategy Revealed the Phylogenetic Diversity of Lipolytic Bacteria Overlooked by the Cultivation-Based Method. Microbes and Environments, 2014, 29, 154-161.	1.6	14
90	Title is missing!. Biotechnology Letters, 1999, 21, 641-646.	2.2	13

#	Article	IF	CITATIONS
91	Environmental and Taxonomic Biodiversities of Gram-Positive Alkaliphiles. , 0, , 293-310.		13
92	H2O2 tolerance of Vibrio rumoiensis S-1T is attributable to the cellular catalase activity. Journal of Bioscience and Bioengineering, 2008, 106, 39-45.	2.2	12
93	The obligate alkaliphile Bacillus clarkii K24-1U retains extruded protons at the beginning of respiration. Journal of Bioenergetics and Biomembranes, 2010, 42, 111-116.	2.3	12
94	Growth-Dependent Catalase Localization in Exiguobacterium oxidotolerans T-2-2T Reflected by Catalase Activity of Cells. PLoS ONE, 2013, 8, e76862.	2.5	12
95	Analysis of the microbiota involved in the early changes associated with indigo reduction in the natural fermentation of indigo. World Journal of Microbiology and Biotechnology, 2019, 35, 123.	3.6	12
96	Production of a novel exopolysaccharide by Rahnella aquatilis. Journal of Bioscience and Bioengineering, 1999, 87, 180-183.	2.2	11
97	Gene cloning and expression of the catalase from the hydrogen peroxide-resistant bacterium Vibrio rumoiensis S-1 and its subcellular localization. Journal of Bioscience and Bioengineering, 2000, 90, 530-534.	2.2	11
98	Winter damage caused byTyphula ishikariensisbiological species I on conifer seedlings and hop roots collected in the Volga–Ural regions of Russia. Canadian Journal of Plant Pathology, 2004, 26, 391-396.	1.4	11
99	Development of media to accelerate the isolation of indigo-reducing bacteria, which are difficult to isolate using conventional media. World Journal of Microbiology and Biotechnology, 2017, 33, 133.	3.6	11
100	Characterization of Trichoderma polysporum from Spitsbergen, Svalbard archipelago, Norway, with species identity, pathogenicity to moss, and polygalacturonase activity. Fungal Ecology, 2011, 4, 15-21.	1.6	10
101	Expression of a highly active catalase VktA in the cyanobacterium Synechococcus elongatus PCC 7942 alleviates the photoinhibition of photosystem II. Photosynthesis Research, 2013, 117, 509-515.	2.9	10
102	Pseudoalteromonas arabiensis sp. nov., a marine polysaccharide-producing bacterium. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 3130-3130.	1.7	10
103	A novel membrane-anchored cytochrome c-550 of alkaliphilic BacillusÂclarkii K24-1U: expression, molecular features and properties of redox potential. Extremophiles, 2009, 13, 491-504.	2.3	9
104	Environmental Distribution and Taxonomic Diversity of Alkaliphiles., 2011,, 55-79.		9
105	Isolation and characterization of a novel facultatively alkaliphilic bacterium, Corynebacterium sp., grown on n-alkanes. Archives of Microbiology, 1994, 162, 381-386.	2.2	8
106	Cytochrome c-552 from gram-negative alkaliphilic Pseudomonas alcaliphila AL15-21T alters the redox properties at high pH. Journal of Bioscience and Bioengineering, 2007, 103, 247-254.	2.2	8
107	Neutral lipids, phospholipids, and a betaine lipid of the snow mold fungus <i>Microdochium nivale</i> . Canadian Journal of Microbiology, 1998, 44, 1051-1059.	1.7	8
108	Fundicoccus fermenti sp. nov., an indigo-reducing facultative anaerobic alkaliphile isolated from indigo fermentation liquor used for dyeing. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	1.7	8

#	Article	IF	CITATIONS
109	Contribution of intracellular negative ion capacity to Donnan effect across the membrane in alkaliphilic Bacillus spp Journal of Bioenergetics and Biomembranes, 2016, 48, 87-96.	2.3	7
110	Analysis of bacterial flora of indigo fermentation fluids utilizing composted indigo leaves (sukumo) and indigo extracted from plants (Ryukyu-ai and Indian indigo). Journal of Bioscience and Bioengineering, 2021, 132, 279-286.	2.2	7
111	Relationship between rates of respiratory proton extrusion and ATP synthesis in obligately alkaliphilic Bacillus clarkii DSM 8720T. Journal of Bioenergetics and Biomembranes, 2012, 44, 265-272.	2.3	6
112	Manipulation of culture conditions for extensive extracellular catalase production by Exiguobacterium oxidotolerans T-2-2T. Annals of Microbiology, 2015, 65, 1183-1187.	2.6	6
113	Isolation and identification of bacteria from high-temperature compost at temperatures exceeding 90C. African Journal of Microbiology Research, 2019, 13, 134-144.	0.4	6
114	The Mechanism Underlying of Long-Term Stable Indigo Reduction State in Indigo Fermentation Using Sukumo (Composted Polygonum tinctorium Leaves). Frontiers in Microbiology, 2021, 12, 698674.	3.5	6
115	Snow mold fungus, Typhula ishikariensis group III, in Arctic Norway can grow at a sub-lethal temperature after freezing stress and during flooding. Sommerfeltia, 2008, 31, 125-131.	1.0	5
116	Physiological role and redox properties of a small cytochrome c5, cytochrome c-552, from alkaliphile, Pseudomonas alcaliphila AL15-21T. Journal of Bioscience and Bioengineering, 2009, 108, 465-470.	2.2	5
117	Physiological function of soluble cytochrome c-552 from alkaliphilic Pseudomonas alcaliphila AL15-21T. Journal of Bioenergetics and Biomembranes, 2011, 43, 473-481.	2.3	5
118	Detection of the Na ⁺ -translocating NADH-quinone reductase in marine bacteria using a PCR technique. Canadian Journal of Microbiology, 2000, 46, 325-332.	1.7	5
119	Production of L-lactic Acid by Direct Fermentation of Potato Kagaku Kogaku Ronbunshu, 1998, 24, 722-725.	0.3	4
120	Cultivation of Microorganisms in the Cultural Medium Made from Squid Internal Organs and Accumulation of Polyunsaturated Fatty Acids in the Cells. Biotechnology Letters, 2005, 27, 933-941.	2.2	4
121	Genomic characterization of closely related species in the Rumoiensis clade infers ecogenomic signatures to nonâ€marine environments. Environmental Microbiology, 2020, 22, 3205-3217.	3.8	4
122	Indigofera tinctoria leaf powder as a promising additive to improve indigo fermentation prepared with sukumo (composted Polygonum tinctorium leaves). World Journal of Microbiology and Biotechnology, 2021, 37, 179.	3.6	4
123	Shewanella oshoroensis sp. nov.: A Mesophilic Eicosapentaenoic Acid and Hentriacontanonaene-producing Bacterium. Research Journal of Microbiology, 2012, 7, 131-138.	0.2	3
124	High and Rapid L-lactic Acid Production by Alkaliphilic Enterococcus sp. by Adding Wheat Bran Hydrolysate. Fermentation Technology, 2016, 06, .	0.1	2
125	Bacterial communities in different locations, seasons and segments of a dairy wastewater treatment system consisting of six segments. Journal of Environmental Sciences, 2016, 46, 109-115.	6.1	1
126	Comparison between wet and semi-dry anaerobic biogas diester under thermophilic and mesophilic conditions: Methane productivity and analysis of microbiota. African Journal of Microbiology Research, 2020, 14, 319-331.	0.4	1

#	Article	IF	CITATIONS
127	Relationship Between Main Channel Structure of Catalases and the Evolutionary Direction in Cold-Adapted Hydrogen Peroxide-Tolerant Exiguobacteium and Psychrobacter. Indian Journal of Microbiology, 2020, 60, 353-362.	2.7	1
128	Gene Cloning and Expression of the Catalase from the Hydrogen Peroxide-Resistant Bacterium Vibrio rumoiensis S-1 and Its Subcellular Localization Journal of Bioscience and Bioengineering, 2000, 90, 530-534.	2.2	1
129	Production of Two Types of Exopolysaccharide by Novosphingobium rosa Journal of Bioscience and Bioengineering, 2003, 95, 152-156.	2.2	1
130	Multiple Functions of Electron-Transfer Protein, Cytochrome <i>c</i> in Alkaliphilic Bacteria. Kagaku To Seibutsu, 2015, 53, 156-163.	0.0	0
131	Evolutionary Strategies of Highly Functional Catalases for Adaptation to High H2O2 Environments. , 0, , .		0
132	Decomposition and Volume Reduction of Scallop Remnants and Squid Viscera Using a Functional Microbial Complex. Journal of the Japan Society of Material Cycles and Waste Management, 2011, 22, 322-327.	0.0	0
133	Exogenous Catalase Gene Expression as a Tool for Enhancing Metabolic Activity and Production of Biomaterials in Host Microorganisms., 0,,.		0
134	Differences in Bioenergetic Metabolism of Obligately Alkaliphilic Bacillaceae Under High pH Depend on the Aeration Conditions. Frontiers in Microbiology, 2022, 13, 842785.	3.5	0