Dennis L Nordlund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2166990/publications.pdf

Version: 2024-02-01

318 papers 27,400 citations

7551 77 h-index 155 g-index

324 all docs

324 docs citations

times ranked

324

32799 citing authors

#	Article	IF	CITATIONS
1	Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nature Chemistry, 2010, 2, 454-460.	6.6	2,489
2	Janus monolayers of transition metal dichalcogenides. Nature Nanotechnology, 2017, 12, 744-749.	15.6	1,459
3	The Structure of the First Coordination Shell in Liquid Water. Science, 2004, 304, 995-999.	6.0	1,287
4	Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nature Communications, 2014, 5, 3005.	5.8	1,155
5	Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nature Communications, 2014, 5, 3529.	5.8	1,118
6	Visualizing Individual Nitrogen Dopants in Monolayer Graphene. Science, 2011, 333, 999-1003.	6.0	774
7	P3HT/PCBM Bulk Heterojunction Organic Photovoltaics: Correlating Efficiency and Morphology. Nano Letters, 2011, 11, 561-567.	4.5	559
8	The inhomogeneous structure of water at ambient conditions. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15214-15218.	3.3	526
9	Structure and Bonding of Water on Pt(111). Physical Review Letters, 2002, 89, 276102.	2.9	512
10	Connecting Dopant Bond Type with Electronic Structure in N-Doped Graphene. Nano Letters, 2012, 12, 4025-4031.	4.5	471
11	Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries. Chemical Reviews, 2017, 117, 13123-13186.	23.0	390
12	Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature, 2014, 510, 381-384.	13.7	385
13	Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation. Nature Communications, 2018, 9, 381.	5. 8	322
14	Designing Boron Nitride Islands in Carbon Materials for Efficient Electrochemical Synthesis of Hydrogen Peroxide. Journal of the American Chemical Society, 2018, 140, 7851-7859.	6.6	310
15	Targeted Ligand-Exchange Chemistry on Cesium Lead Halide Perovskite Quantum Dots for High-Efficiency Photovoltaics. Journal of the American Chemical Society, 2018, 140, 10504-10513.	6.6	303
16	Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides. Nature Materials, 2019, 18, 256-265.	13.3	280
17	Identifying Dense NiSe ₂ /CoSe ₂ Heterointerfaces Coupled with Surface Highâ€Valence Bimetallic Sites for Synergistically Enhanced Oxygen Electrocatalysis. Advanced Materials, 2020, 32, e2000607.	11.1	251
18	Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)5 in solution. Nature, 2015, 520, 78-81.	13.7	247

#	Article	lF	Citations
19	Elucidating anionic oxygen activity in lithium-rich layered oxides. Nature Communications, 2018, 9, 947.	5.8	241
20	Oxygen Release Induced Chemomechanical Breakdown of Layered Cathode Materials. Nano Letters, 2018, 18, 3241-3249.	4.5	237
21	Defective Carbon-Based Materials for the Electrochemical Synthesis of Hydrogen Peroxide. ACS Sustainable Chemistry and Engineering, 2018, 6, 311-317.	3.2	236
22	Metal segregation in hierarchically structured cathode materials for high-energy lithium \hat{A} batteries. Nature Energy, 2016, 1, .	19.8	209
23	Understanding Interactions between Manganese Oxide and Gold That Lead to Enhanced Activity for Electrocatalytic Water Oxidation. Journal of the American Chemical Society, 2014, 136, 4920-4926.	6.6	205
24	Enabling Stable Cycling of 4.2 V Highâ€Voltage Allâ€Solidâ€State Batteries with PEOâ€Based Solid Electrolyte. Advanced Functional Materials, 2020, 30, 1909392.	7.8	204
25	Probing the transition state region in catalytic CO oxidation on Ru. Science, 2015, 347, 978-982.	6.0	193
26	Mn ₃ O ₄ Supported on Glassy Carbon: An Active Non-Precious Metal Catalyst for the Oxygen Reduction Reaction. ACS Catalysis, 2012, 2, 2687-2694.	5 . 5	192
27	Local Atomic and Electronic Structure of Boron Chemical Doping in Monolayer Graphene. Nano Letters, 2013, 13, 4659-4665.	4.5	192
28	Real-Time Observation of Surface Bond Breaking with an X-ray Laser. Science, 2013, 339, 1302-1305.	6.0	179
29	Direct Observation of Reversible Magnesium Ion Intercalation into a Spinel Oxide Host. Advanced Materials, 2015, 27, 3377-3384.	11.1	178
30	Profiling the nanoscale gradient in stoichiometric layered cathode particles for lithium-ion batteries. Energy and Environmental Science, 2014, 7, 3077.	15.6	170
31	Fully Oxidized Ni–Fe Layered Double Hydroxide with 100% Exposed Active Sites for Catalyzing Oxygen Evolution Reaction. ACS Catalysis, 2019, 9, 6027-6032.	5.5	165
32	Phase evolution for conversion reaction electrodes in lithium-ion batteries. Nature Communications, 2014, 5, 3358.	5.8	163
33	Influence of Dopant Distribution on the Plasmonic Properties of Indium Tin Oxide Nanocrystals. Journal of the American Chemical Society, 2014, 136, 7110-7116.	6.6	160
34	X-ray absorption spectroscopy and X-ray Raman scattering of water and ice; an experimental view. Journal of Electron Spectroscopy and Related Phenomena, 2010, 177, 99-129.	0.8	158
35	Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H ₂ O ₂ . Reaction Chemistry and Engineering, 2017, 2, 239-245.	1.9	157
36	Strontium Insertion in Methylammonium Lead Iodide: Long Charge Carrier Lifetime and High Fillâ€Factor Solar Cells. Advanced Materials, 2016, 28, 9839-9845.	11.1	150

#	Article	IF	Citations
37	Understanding the Origin of Highly Selective CO ₂ Electroreduction to CO on Ni,Nâ€doped Carbon Catalysts. Angewandte Chemie - International Edition, 2020, 59, 4043-4050.	7.2	148
38	Charge Heterogeneity and Surface Chemistry in Polycrystalline Cathode Materials. Joule, 2018, 2, 464-477.	11.7	145
39	Understanding the Degradation Mechanism of Lithium Nickel Oxide Cathodes for Li-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 31677-31683.	4.0	144
40	The Myth of d ⁸ Copper(III). Journal of the American Chemical Society, 2019, 141, 18508-18520.	6.6	139
41	Phase Transformation and Lithiation Effect on Electronic Structure of Li _{<i>x</i>} FePO ₄ : An In-Depth Study by Soft X-ray and Simulations. Journal of the American Chemical Society, 2012, 134, 13708-13715.	6.6	136
42	Control of Doping in Cu ₂ SnS ₃ through Defects and Alloying. Chemistry of Materials, 2014, 26, 4951-4959.	3.2	136
43	Extremely reduced dielectric confinement in two-dimensional hybrid perovskites with large polar organics. Communications Physics, $2018,1,.$	2.0	135
44	A seven-crystal Johann-type hard x-ray spectrometer at the Stanford Synchrotron Radiation Lightsource. Review of Scientific Instruments, 2013, 84, 053102.	0.6	132
45	Synthesis of a copper-supported triplet nitrene complex pertinent to copper-catalyzed amination. Science, 2019, 365, 1138-1143.	6.0	131
46	A multi-crystal wavelength dispersive x-ray spectrometer. Review of Scientific Instruments, 2012, 83, 073114.	0.6	130
47	Tunable Polyanilineâ€Based Porous Carbon with Ultrahigh Surface Area for CO ₂ Capture at Elevated Pressure. Advanced Energy Materials, 2016, 6, 1502491.	10.2	129
48	Charge distribution guided by grain crystallographic orientations in polycrystalline battery materials. Nature Communications, 2020, $11,83$.	5.8	129
49	Depth-Dependent Redox Behavior of LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂ . Journal of the Electrochemical Society, 2018, 165, A696-A704.	1.3	123
50	Sodiation Kinetics of Metal Oxide Conversion Electrodes: A Comparative Study with Lithiation. Nano Letters, 2015, 15, 5755-5763.	4.5	122
51	Ultrafast Core-Hole-Induced Dynamics in Water Probed by X-Ray Emission Spectroscopy. Physical Review Letters, 2005, 94, 227401.	2.9	117
52	Probing the Electron Delocalization in Liquid Water and Ice at Attosecond Time Scales. Physical Review Letters, 2007, 99, 217406.	2.9	117
53	The structure of water in the hydration shell of cations from x-ray Raman and small angle x-ray scattering measurements. Journal of Chemical Physics, 2011, 134, 064513.	1.2	111
54	Imaging chiral symmetry breaking from Kekulé bond order in graphene. Nature Physics, 2016, 12, 950-958.	6.5	111

#	Article	IF	CITATIONS
55	Deciphering the Cathode–Electrolyte Interfacial Chemistry in Sodium Layered Cathode Materials. Advanced Energy Materials, 2018, 8, 1801975.	10.2	111
56	Dopant Distribution in Co-Free High-Energy Layered Cathode Materials. Chemistry of Materials, 2019, 31, 9769-9776.	3.2	110
57	Hole Doping in Al-Containing Nickel Oxide Materials To Improve Electrochromic Performance. ACS Applied Materials & Documents (2013), 5, 301-309.	4.0	109
58	Revealing and suppressing surface Mn(II) formation of Na0.44MnO2 electrodes for Na-ion batteries. Nano Energy, 2015, 16, 186-195.	8.2	107
59	An Oxygenâ€Insensitive Hydrogen Evolution Catalyst Coated by a Molybdenumâ€Based Layer for Overall Water Splitting. Angewandte Chemie - International Edition, 2017, 56, 5780-5784.	7.2	106
60	Electrochemical Oxidation of Size-Selected Pt Nanoparticles Studied Using in Situ High-Energy-Resolution X-ray Absorption Spectroscopy. ACS Catalysis, 2012, 2, 2371-2376.	5.5	105
61	Comparison of Coal-Derived and Petroleum Asphaltenes by ¹³ C Nuclear Magnetic Resonance, DEPT, and XRS. Energy & Supply 10, 25, 3068-3076.	2.5	103
62	Anomalous Behavior of the Homogeneous Ice Nucleation Rate in "No-Man's Land― Journal of Physical Chemistry Letters, 2015, 6, 2826-2832.	2.1	102
63	Transitions from Near-Surface to Interior Redox upon Lithiation in Conversion Electrode Materials. Nano Letters, 2015, 15, 1437-1444.	4.5	97
64	Half or full core hole in density functional theory X-ray absorption spectrum calculations of water?. Physical Chemistry Chemical Physics, 2005, 7, 2854.	1.3	96
65	Revealing the Dynamics and Roles of Iron Incorporation in Nickel Hydroxide Water Oxidation Catalysts. Journal of the American Chemical Society, 2021, 143, 18519-18526.	6.6	96
66	Multiconfigurational nature of 5f orbitals in uranium and plutonium intermetallics. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10205-10209.	3.3	94
67	Reâ€evaluating the Role of Sterics and Electronic Coupling in Determining the Openâ€Circuit Voltage of Organic Solar Cells. Advanced Materials, 2013, 25, 6076-6082.	11.1	90
68	On the chemical state of Co oxide electrocatalysts during alkaline water splitting. Physical Chemistry Chemical Physics, 2013, 15, 17460.	1.3	89
69	Enhancement Effect of Noble Metals on Manganese Oxide for the Oxygen Evolution Reaction. Journal of Physical Chemistry Letters, 2015, 6, 4178-4183.	2.1	89
70	Operando Revealing Dynamic Reconstruction of NiCo Carbonate Hydroxide for High-Rate Energy Storage. Joule, 2020, 4, 673-687.	11.7	88
71	Molecularly intact and dissociative adsorption of water on clean Cu(110): A comparison with the water/Ru(001) system. Surface Science, 2005, 585, L183-L189.	0.8	84
72	Interplay between Energetic and Kinetic Factors on the Ambient Stability of n-Channel Organic Transistors Based on Perylene Diimide Derivatives. Chemistry of Materials, 2009, 21, 5508-5518.	3.2	84

#	Article	IF	CITATIONS
73	Increasing correlation length in bulk supercooled H2O, D2O, and NaCl solution determined from small angle x-ray scattering. Journal of Chemical Physics, 2010, 133, 134504.	1.2	84
74	Linac Coherent Light Source soft x-ray materials science instrument optical design and monochromator commissioning. Review of Scientific Instruments, 2011, 82, 093104.	0.6	83
75	A high resolution and large solid angle x-ray Raman spectroscopy end-station at the Stanford Synchrotron Radiation Lightsource. Review of Scientific Instruments, 2012, 83, 043112.	0.6	81
76	Precious Metal-Free Nickel Nitride Catalyst for the Oxygen Reduction Reaction. ACS Applied Materials & Amp; Interfaces, 2019, 11, 26863-26871.	4.0	81
77	The hydrogen bond in ice probed by soft x-ray spectroscopy and density functional theory. Journal of Chemical Physics, 2005, 122, 154505.	1.2	79
78	X-ray Absorption Study of Graphene Oxide and Transition Metal Oxide Nanocomposites. Journal of Physical Chemistry C, 2014, 118, 18706-18712.	1.5	79
79	Atomic-Scale Perspective of Ultrafast Charge Transfer at a Dye–Semiconductor Interface. Journal of Physical Chemistry Letters, 2014, 5, 2753-2759.	2.1	79
80	In situ crystallization of high performing WO3-based electrochromic materials and the importance for durability and switching kinetics. Journal of Materials Chemistry, 2012, 22, 16817.	6.7	77
81	Metal–Ligand Covalency of Iron Complexes from High-Resolution Resonant Inelastic X-ray Scattering. Journal of the American Chemical Society, 2013, 135, 17121-17134.	6.6	7 5
82	Structural and Electrochemical Impacts of Mg/Mn Dual Dopants on the LiNiO ₂ Cathode in Li-Metal Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 12874-12882.	4.0	75
83	Origin of Electrochromism in High-Performing Nanocomposite Nickel Oxide. ACS Applied Materials & Samp; Interfaces, 2013, 5, 3643-3649.	4.0	73
84	Ultrafast Molecular Dissociation of Water in Ice. Physical Review Letters, 2004, 93, 148302.	2.9	71
85	Probing the hydrogen-bond network of water via time-resolved soft X-ray spectroscopy. Physical Chemistry Chemical Physics, 2009, 11, 3951.	1.3	71
86	A setup for resonant inelastic soft x-ray scattering on liquids at free electron laser light sources. Review of Scientific Instruments, 2012, 83, 123109.	0.6	70
87	A different view of structure-making and structure-breaking in alkali halide aqueous solutions through x-ray absorption spectroscopy. Journal of Chemical Physics, 2014, 140, 244506.	1.2	70
88	Structure, Redox Chemistry, and Interfacial Alloy Formation in Monolayer and Multilayer Cu/Au(111) Model Catalysts for CO ₂ Electroreduction. Journal of Physical Chemistry C, 2014, 118, 7954-7961.	1.5	68
89	Ni5Ga3 catalysts for CO2 reduction to methanol: Exploring the role of Ga surface oxidation/reduction on catalytic activity. Applied Catalysis B: Environmental, 2020, 267, 118369.	10.8	68
90	Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction. Nature Communications, 2016, 7, 11941.	5 . 8	67

#	Article	IF	Citations
91	Surface structure of thin ice films. Chemical Physics Letters, 2004, 395, 161-165.	1.2	66
92	L-Edge X-ray Absorption Spectroscopy of Dilute Systems Relevant to Metalloproteins Using an X-ray Free-Electron Laser. Journal of Physical Chemistry Letters, 2013, 4, 3641-3647.	2.1	64
93	Soft X-Ray Second Harmonic Generation as an Interfacial Probe. Physical Review Letters, 2018, 120, 023901.	2.9	64
94	Wide-angle X-ray diffraction and molecular dynamics study of medium-range order in ambient and hot water. Physical Chemistry Chemical Physics, 2011, 13, 19997.	1.3	63
95	Experimental and Computational X-ray Emission Spectroscopy as a Direct Probe of Protonation States in Oxo-Bridged Mn ^{IV} Dimers Relevant to Redox-Active Metalloproteins. Inorganic Chemistry, 2013, 52, 12915-12922.	1.9	62
96	Elucidation of the surface characteristics and electrochemistry of high-performance LiNiO ₂ . Chemical Communications, 2016, 52, 4239-4242.	2.2	62
97	Electronic structure effects in liquid water studied by photoelectron spectroscopy and density functional theory. Chemical Physics Letters, 2008, 460, 86-92.	1.2	61
98	Orientation of Phenylphosphonic Acid Self-Assembled Monolayers on a Transparent Conductive Oxide: A Combined NEXAFS, PM-IRRAS, and DFT Study. Langmuir, 2013, 29, 2166-2174.	1.6	61
99	Absolute pulse energy measurements of soft x-rays at the Linac Coherent Light Source. Optics Express, 2014, 22, 21214.	1.7	61
100	Comparison of x-ray absorption spectra between water and ice: New ice data with low pre-edge absorption cross-section. Journal of Chemical Physics, 2014, 141, 034507.	1.2	60
101	Effect of Backbone Chemistry on the Structure of Polyurea Films Deposited by Molecular Layer Deposition. Chemistry of Materials, 2017, 29, 1192-1203.	3.2	59
102	Coherent X-rays reveal the influence of cage effects on ultrafast water dynamics. Nature Communications, 2018, 9, 1917.	5.8	59
103	Plasma jet printing for flexible substrates. Applied Physics Letters, 2016, 108, .	1.5	58
104	Covalency in Metal–Oxygen Multiple Bonds Evaluated Using Oxygen K-edge Spectroscopy and Electronic Structure Theory. Journal of the American Chemical Society, 2013, 135, 1864-1871.	6.6	57
105	Revealing Anisotropic Spinel Formation on Pristine Li―and Mnâ€Rich Layered Oxide Surface and Its Impact on Cathode Performance. Advanced Energy Materials, 2017, 7, 1602010.	10.2	57
106	Chemical and Morphological Control of Interfacial Selfâ€Doping for Efficient Organic Electronics. Advanced Materials, 2018, 30, e1705976.	11,1	55
107	Surface Structure of Aerobically Oxidized Diamond Nanocrystals. Journal of Physical Chemistry C, 2014, 118, 26695-26702.	1.5	54
108	Atomistic Interrogation of B–N Co-dopant Structures and Their Electronic Effects in Graphene. ACS Nano, 2016, 10, 6574-6584.	7.3	53

#	Article	IF	Citations
109	Persistent organic matter in oxic subseafloor sediment. Nature Geoscience, 2019, 12, 126-131.	5.4	53
110	Why LiFePO ₄ is a safe battery electrode: Coulomb repulsion induced electron-state reshuffling upon lithiation. Physical Chemistry Chemical Physics, 2015, 17, 26369-26377.	1.3	52
111	Ultrafast Electron Transfer at Organic Semiconductor Interfaces: Importance of Molecular Orientation. Journal of Physical Chemistry Letters, 2015, 6, 6-12.	2.1	52
112	Accelerated Evolution of Surface Chemistry Determined by Temperature and Cycling History in Nickel-Rich Layered Cathode Materials. ACS Applied Materials & Samp; Interfaces, 2018, 10, 23842-23850.	4.0	52
113	Selective Ultrafast Probing of Transient Hot Chemisorbed and Precursor States of CO on Ru(0001). Physical Review Letters, 2013, 110, 186101.	2.9	51
114	Degradation of Bimetallic Model Electrocatalysts: An In Situ Xâ€Ray Absorption Spectroscopy Study. Angewandte Chemie - International Edition, 2011, 50, 10190-10192.	7.2	50
115	Hydrogen-bond induced surface core-level shift in pyridine carboxylic acids. Surface Science, 2001, 486, 157-166.	0.8	49
116	Ultrafast terahertz field control of electronic and structural interactions in vanadium dioxide. Physical Review B, 2018, 98, .	1.1	49
117	Identification of the dominant photochemical pathways and mechanistic insights to the ultrafast ligand exchange of Fe(CO)5 to Fe(CO)4EtOH. Structural Dynamics, 2016, 3, 043204.	0.9	48
118	Multi-vendor, multicentre comparison of contrast-enhanced SSFP and T2-STIR CMR for determining myocardium at risk in ST-elevation myocardial infarction. European Heart Journal Cardiovascular Imaging, 2016, 17, 744-753.	0.5	47
119	Biogenic manganese oxides as reservoirs of organic carbon and proteins in terrestrial and marine environments. Geobiology, 2017, 15, 158-172.	1.1	47
120	Surface-to-Bulk Redox Coupling through Thermally Driven Li Redistribution in Li- and Mn-Rich Layered Cathode Materials. Journal of the American Chemical Society, 2019, 141, 12079-12086.	6.6	47
121	Creating compressive stress at the NiOOH/NiO interface for water oxidation. Journal of Materials Chemistry A, 2020, 8, 10747-10754.	5.2	47
122	Xâ∈Ray Spectroscopic Investigation of Chlorinated Graphene: Surface Structure and Electronic Effects. Advanced Functional Materials, 2015, 25, 4163-4169.	7.8	46
123	Auger decay calculations with core-hole excited-state molecular-dynamics simulations of water. Journal of Chemical Physics, 2006, 124, 064307.	1.2	45
124	Sequential Deposition: Optimization of Solvent Swelling for High-Performance Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2015, 7, 653-661.	4.0	45
125	Empowering multicomponent cathode materials for sodium ion batteries by exploring three-dimensional compositional heterogeneities. Energy and Environmental Science, 2018, 11, 2496-2508.	15.6	45
126	Thermal stress-induced charge and structure heterogeneity in emerging cathode materials. Materials Today, 2020, 35, 87-98.	8.3	45

#	Article	IF	CITATIONS
127	Reply to Soper et al.: Fluctuations in water around a bimodal distribution of local hydrogen-bonded structural motifs. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, .	3.3	44
128	Applications of ALD MnO to electrochemical water splitting. Physical Chemistry Chemical Physics, 2015, 17, 14003-14011.	1.3	44
129	A New Anion Receptor for Improving the Interface between Lithium- and Manganese-Rich Layered Oxide Cathode and the Electrolyte. Chemistry of Materials, 2017, 29, 2141-2149.	3.2	44
130	Investigating the Intercalation Chemistry of Alkali Ions in Fluoride Perovskites. Chemistry of Materials, 2017, 29, 1561-1568.	3.2	44
131	Operando Tailoring of Defects and Strains in Corrugated βâ€Ni(OH) ₂ Nanosheets for Stable and Highâ€Rate Energy Storage. Advanced Materials, 2021, 33, e2006147.	11.1	44
132	Influence of synthesis conditions on the surface passivation and electrochemical behavior of layered cathode materials. Journal of Materials Chemistry A, 2014, 2, 19833-19840.	5.2	43
133	Finite temperature effects on the X-ray absorption spectra of lithium compounds: First-principles interpretation of X-ray Raman measurements. Journal of Chemical Physics, 2014, 140, 034107.	1.2	43
134	Oxidation and crystal field effects in uranium. Physical Review B, 2015, 92, .	1.1	43
135	Correlation between sp ³ -to-sp ² Ratio and Surface Oxygen Functionalities in Tetrahedral Amorphous Carbon (ta-C) Thin Film Electrodes and Implications of Their Electrochemical Properties. Journal of Physical Chemistry C, 2016, 120, 8298-8304.	1.5	43
136	Tuning Complex Transition Metal Hydroxide Nanostructures as Active Catalysts for Water Oxidation by a Laser–Chemical Route. Nano Letters, 2015, 15, 2498-2503.	4.5	42
137	Disentangling Transient Charge Density and Metal–Ligand Covalency in Photoexcited Ferricyanide with Femtosecond Resonant Inelastic Soft X-ray Scattering. Journal of Physical Chemistry Letters, 2018, 9, 3538-3543.	2.1	42
138	Orbital rehybridization in n-octane adsorbed on Cu(110). Journal of Chemical Physics, 2003, 118, 3782-3789.	1.2	41
139	Thermally-driven mesopore formation and oxygen release in delithiated NCA cathode particles. Journal of Materials Chemistry A, 2019, 7, 12593-12603.	5.2	41
140	Unveiling the critical role of the Mn dopant in a NiFe(OH) ₂ catalyst for water oxidation. Journal of Materials Chemistry A, 2020, 8, 17471-17476.	5. 2	41
141	The sensitive surface chemistry of Co-free, Ni-rich layered oxides: identifying experimental conditions that influence characterization results. Journal of Materials Chemistry A, 2020, 8, 17487-17497.	5. 2	41
142	Competing Effects of Fluorination on the Orientation of Aromatic and Aliphatic Phosphonic Acid Monolayers on Indium Tin Oxide. Journal of Physical Chemistry C, 2013, 117, 15139-15147.	1.5	40
143	Soft X-ray spectroscopy with transition-edge sensors at Stanford Synchrotron Radiation Lightsource beamline 10-1. Review of Scientific Instruments, 2019, 90, 113101.	0.6	40
144	Possible Bose-condensate behavior in a quantum phase originating in a collective excitation in the chemically and optically doped Mott-Hubbard system UO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>2+<mml:mi>x</mml:mi></mml:mn></mml:mrow></mml:msub> Physical Review B, 2013, 88, .</mml:math>	1.1 <td>39 th>.</td>	39 th>.

#	Article	IF	Citations
145	Structural changes correlated with magnetic spin state isomorphism in the S ₂ state of the Mn ₄ CaO ₅ cluster in the oxygen-evolving complex of photosystem II. Chemical Science, 2016, 7, 5236-5248.	3.7	39
146	Operando investigation of Au-MnOx thin films with improved activity for the oxygen evolution reaction. Electrochimica Acta, 2017, 230, 22-28.	2.6	39
147	Surface Characterization of Polythiophene:Fullerene Blends on Different Electrodes Using Near Edge X-ray Absorption Fine Structure. ACS Applied Materials & Samp; Interfaces, 2011, 3, 726-732.	4.0	38
148	Beyond Divalent Copper: A Redox Couple for Sodium Ion Battery Cathode Materials. ECS Electrochemistry Letters, 2015, 4, A41-A44.	1.9	38
149	Thermally driven mesoscale chemomechanical interplay in Li _{0.5} Ni _{0.6} Mn _{0.2} Co _{0.2} O ₂ cathode materials. Journal of Materials Chemistry A, 2018, 6, 23055-23061.	5.2	38
150	Delocalization and occupancy effects of 5f orbitals in plutonium intermetallics using L3-edge resonant X-ray emission spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2014, 194, 57-65.	0.8	37
151	Interface Trap Density Reduction for Al ₂ O ₃ /GaN (0001) Interfaces by Oxidizing Surface Preparation prior to Atomic Layer Deposition. ACS Applied Materials & Samp; Interfaces, 2015, 7, 12774-12780.	4.0	37
152	Atomic Insights into the Enhanced Surface Stability in High Voltage Cathode Materials by Ultrathin Coating. Advanced Functional Materials, 2017, 27, 1602873.	7.8	37
153	Sensitivity of X-ray Core Spectroscopy to Changes in Metal Ligation: A Systematic Study of Low-Coordinate, High-Spin Ferrous Complexes. Inorganic Chemistry, 2013, 52, 6286-6298.	1.9	35
154	Photon-in photon-out hard X-ray spectroscopy at the Linac Coherent Light Source. Journal of Synchrotron Radiation, 2015, 22, 612-620.	1.0	35
155	Operando Study of Thermal Oxidation of Monolayer MoS ₂ . Advanced Science, 2021, 8, 2002768.	5.6	35
156	Soft x-ray absorption spectroscopy of metalloproteins and high-valent metal-complexes at room temperature using free-electron lasers. Structural Dynamics, 2017, 4, 054307.	0.9	34
157	Plasma Jet Printing and <i>in Situ</i> Reduction of Highly Acidic Graphene Oxide. ACS Nano, 2018, 12, 5473-5481.	7.3	34
158	Depth-dependent valence stratification driven by oxygen redox in lithium-rich layered oxide. Nature Communications, 2020, 11, 6342.	5.8	34
159	Electron-Transfer Processes in Zinc Phthalocyanine–Phosphonic Acid Monolayers on ITO: Characterization of Orientation and Charge-Transfer Kinetics by Waveguide Spectroelectrochemistry. Journal of Physical Chemistry Letters, 2012, 3, 1154-1158.	2.1	33
160	Reabsorption of Soft X-Ray Emission at High X-Ray Free-Electron Laser Fluences. Physical Review Letters, 2014, 113, 153002.	2.9	33
161	Targeted Surface Doping with Reversible Local Environment Improves Oxygen Stability at the Electrochemical Interfaces of Nickel-Rich Cathode Materials. ACS Applied Materials & Diterfaces, 2019, 11, 37885-37891.	4.0	33
162	Synergistic Role of Dopants on the Morphology of Alloyed Copper Chalcogenide Nanocrystals. Journal of the American Chemical Society, 2015, 137, 6464-6467.	6.6	32

#	Article	IF	Citations
163	X-ray emission spectroscopy of bulk liquid water in "no-man's land― Journal of Chemical Physics, 2015, 142, 044505.	1.2	32
164	Simultaneous spin-coating and solvent annealing: manipulating the active layer morphology to a power conversion efficiency of 9.6% in polymer solar cells. Materials Horizons, 2015, 2, 592-597.	6.4	32
165	Microscopic probing of the size dependence in hydrophobic solvation. Journal of Chemical Physics, 2012, 136, 074507.	1.2	30
166	Understanding and control of bipolar self-doping in copper nitride. Journal of Applied Physics, 2016, 119, .	1.1	30
167	Cross-linked aluminum dioxybenzene coating for stabilization of silicon electrodes. Nano Energy, 2016, 22, 202-210.	8.2	30
168	Trends in Carbon, Oxygen, and Nitrogen Core in the X-ray Absorption Spectroscopy of Carbon Nanomaterials: A Guide for the Perplexed. Journal of Physical Chemistry C, 2021, 125, 973-988.	1.5	30
169	Quantifying Geometric Strain at the PbS QD-TiO ₂ Anode Interface and Its Effect on Electronic Structures. Nano Letters, 2015, 15, 7829-7836.	4.5	29
170	Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures. Journal of Chemical Physics, 2016, 144, 144201.	1.2	29
171	Charge and Spin-State Characterization of Cobalt Bis(<i>>o</i> -dioxolene) Valence Tautomers Using Co KÎ ² X-ray Emission and L-Edge X-ray Absorption Spectroscopies. Inorganic Chemistry, 2017, 56, 737-747.	1.9	29
172	In situ X-ray Raman spectroscopy study of the hydrogen sorption properties of lithium borohydride nanocomposites. Physical Chemistry Chemical Physics, 2014, 16, 22651-22658.	1.3	28
173	Controlling Interdiffusion, Interfacial Composition, and Adhesion in Polymer Solar Cells. Advanced Materials Interfaces, 2014, 1, 1400135.	1.9	28
174	Preparation, Structure, and Orientation of Pyrite FeS ₂ {100} Surfaces: Anisotropy, Sulfur Monomers, Dimer Vacancies, and a Possible FeS Surface Phase. Journal of Physical Chemistry C, 2014, 118, 21896-21903.	1.5	28
175	Facile, ethylene glycol-promoted microwave-assisted solvothermal synthesis of high-performance LiCoPO ₄ as a high-voltage cathode material for lithium-ion batteries. RSC Advances, 2016, 6, 82984-82994.	1.7	28
176	Degradation mechanism of over-charged LiCoO2/mesocarbon microbeads battery during shallow depth of discharge cycling. Journal of Power Sources, 2016, 329, 255-261.	4.0	28
177	Surface transformation by a "cocktail―solvent enables stable cathode materials for sodium ion batteries. Journal of Materials Chemistry A, 2018, 6, 2758-2766.	5.2	28
178	Selective nitrogen doping of graphene oxide by laser irradiation for enhanced hydrogen evolution activity. Chemical Communications, 2018, 54, 13726-13729.	2.2	28
179	Structural Degradation of Layered Cathode Materials in Lithium-Ion Batteries Induced by Ball Milling. Journal of the Electrochemical Society, 2019, 166, A1964-A1971.	1.3	28
180	Single-Walled Carbon Nanotube Network Electrodes for the Detection of Fentanyl Citrate. ACS Applied Nano Materials, 2020, 3, 1203-1212.	2.4	28

#	Article	IF	CITATIONS
181	Probing Dopant Redistribution, Phase Propagation, and Local Chemical Changes in the Synthesis of Layered Oxide Battery Cathodes. Advanced Energy Materials, 2021, 11, .	10.2	28
182	In situ X-ray Raman spectroscopy of LiBH4. Physical Chemistry Chemical Physics, 2012, 14, 5581.	1.3	27
183	Ultrafast soft X-ray emission spectroscopy of surface adsorbates using an X-ray free electron laser. Journal of Electron Spectroscopy and Related Phenomena, 2013, 187, 9-14.	0.8	27
184	Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer. Structural Dynamics, 2015, 2, 025101.	0.9	27
185	Anisotropic attosecond charge carrier dynamics and layer decoupling in quasi-2D layered SnS2. Nature Communications, 2017, 8, 1369.	5 . 8	27
186	Tuning Composition and Activity of Cobalt Titanium Oxide Catalysts for the Oxygen Evolution Reaction. Electrochimica Acta, 2016, 193, 240-245.	2.6	26
187	Partially Reduced Graphene Oxide Modified Tetrahedral Amorphous Carbon Thin-Film Electrodes as a Platform for Nanomolar Detection of Dopamine. Journal of Physical Chemistry C, 2017, 121, 8153-8164.	1.5	26
188	In Situ Engineering of the Electrode–Electrolyte Interface for Stabilized Overlithiated Cathodes. Advanced Materials, 2017, 29, 1604549.	11.1	26
189	Surface functionality and formation mechanisms of carbon and graphene quantum dots. Diamond and Related Materials, 2020, 110, 108101.	1.8	26
190	A versatile Johansson-type tender x-ray emission spectrometer. Review of Scientific Instruments, 2020, 91, 033101.	0.6	26
191	Effect of Liquid Electrolyte Soaking on the Interfacial Resistance of Li ₇ La ₃ Zr ₂ O ₁₂ for All-Solid-State Lithium Batteries. ACS Applied Materials & Date in the Action of	4.0	26
192	Strong Influence of Coadsorbate Interaction on CO Desorption Dynamics on Ru(0001) Probed by Ultrafast X-Ray Spectroscopy andAbÂlnitioSimulations. Physical Review Letters, 2015, 114, 156101.	2.9	25
193	Hard X-rays in–soft X-rays out: An operando piggyback view deep into a charging lithium ion battery with X-ray Raman spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2015, 200, 257-263. Probing mmm:math	0.8	25
194	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mn>5</mml:mn><mml:mi>f</mml:mi>configurations in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>URu</mml:mi><mml:u<mml:math< td=""><td></td><td></td></mml:u<mml:math<></mml:msub></mml:mrow></mml:math></mml:mrow>		
195	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mi>L</mml:mi><mml:mtext>IIIUnderwater Organic Solar Cells via Selective Removal of Electron Acceptors near the Top Electrode. ACS Energy Letters, 2019, 4, 1034-1041.</mml:mtext></mml:msub>	mtext> <td>nml:msub></td>	nml:msub>
196	Geometric structure and chemical bonding of acetylene adsorbed on Cu(110). Surface Science, 2004, 565, 206-222.	0.8	24
197	Exploring the local electronic structure and geometric arrangement of ALD Zn(O,S) buffer layers using X-ray absorption spectroscopy. Journal of Materials Chemistry C, 2015, 3, 12192-12198.	2.7	24
198	Tailoring the surface properties of LiNi _{0.4} Mn _{0.4} Co _{0.2} O ₂ by titanium substitution for improved high voltage cycling performance. Physical Chemistry Chemical Physics, 2015, 17, 21778-21781.	1.3	24

#	Article	IF	Citations
199	Morphology and interdiffusion control to improve adhesion and cohesion properties in inverted polymer solar cells. Solar Energy Materials and Solar Cells, 2015, 132, 443-449.	3.0	24
200	L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array. Journal of Chemical Physics, 2017, 147, 214201.	1.2	24
201	Photocatalytic Activity and Selectivity of ZnO Materials in the Decomposition of Organic Compounds. ChemCatChem, 2013, 5, 3841-3846.	1.8	23
202	Revealing the Bonding Environment of Zn in ALD Zn(O,S) Buffer Layers through X-ray Absorption Spectroscopy. ACS Applied Materials & Spectroscopy. Spectroscopy. ACS Applied Materials &	4.0	23
203	Elucidating the Evolving Atomic Structure in Atomic Layer Deposition Reactions with in Situ XANES and Machine Learning. Chemistry of Materials, 2019, 31, 8937-8947.	3.2	23
204	Tuning the Morphology and Electronic Properties of Single-Crystal LiNi0.5Mn1.5O4â [~] δ: Exploring the Influence of LiCl–KCl Molten Salt Flux Composition and Synthesis Temperature. Inorganic Chemistry, 2020, 59, 10591-10603.	1.9	23
205	Experimental validation of contrast-enhanced SSFP cine CMR for quantification of myocardium at risk in acute myocardial infarction. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 12.	1.6	22
206	Importance of standardizing timing of hematocrit measurement when using cardiovascular magnetic resonance to calculate myocardial extracellular volume (ECV) based on pre- and post-contrast T1 mapping. Journal of Cardiovascular Magnetic Resonance, 2018, 20, 46.	1.6	22
207	Water-Processable P2-Na _{0.67} Ni _{0.22} Cu _{0.11} Mn _{0.56} Ti _{0.11} O _{Material for Sodium Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A251-A257.}	2< /su b>C	ath xx de
208	Electronic structure changes upon lithium intercalation into graphite $\hat{a} \in \text{``Insights}$ from ex situ and operando x-ray Raman spectroscopy. Carbon, 2019, 143, 371-377.	5.4	22
209	Covalency in oxidized uranium. Physical Review B, 2015, 92, .	1.1	21
210	Chemical Bond Activation Observed with an X-ray Laser. Journal of Physical Chemistry Letters, 2016, 7, 3647-3651.	2.1	21
211	Uncovering phase transformation, morphological evolution, and nanoscale color heterogeneity in tungsten oxide electrochromic materials. Journal of Materials Chemistry A, 2020, 8, 20000-20010.	5.2	21
212	Nanostructured Manganese Oxide Supported onto Particulate Glassy Carbon as an Active and Stable Oxygen Reduction Catalyst in Alkaline-Based Fuel Cells. Journal of the Electrochemical Society, 2014, 161, D3105-D3112.	1.3	20
213	Electrochromic performance of nanocomposite nickel oxide counter electrodes containing lithium and zirconium. Solar Energy Materials and Solar Cells, 2014, 126, 206-212.	3.0	20
214	Structural and Chemical Evolution of Amorphous Nickel Iron Complex Hydroxide upon Lithiation/Delithiation. Chemistry of Materials, 2015, 27, 1583-1589.	3.2	20
215	Extent of Myocardium at Risk for Left Anterior Descending Artery, Right Coronary Artery, and Left Circumflex Artery Occlusion Depicted by Contrast-Enhanced Steady State Free Precession and T2-Weighted Short Tau Inversion Recovery Magnetic Resonance Imaging. Circulation: Cardiovascular Imaging. 2016. 9.	1.3	20
216	Chemical control of competing electron transfer pathways in iron tetracyano-polypyridyl photosensitizers. Chemical Science, 2020, 11, 4360-4373.	3.7	20

#	Article	IF	Citations
217	Increased fraction of weakened hydrogen bonds of water in aerosol OT reverse micelles. Journal of Chemical Physics, 2009, 131, 031103.	1.2	19
218	X-ray Raman scattering provides evidence for interfacial acetonitrile-water dipole interactions in aqueous solutions. Journal of Chemical Physics, 2011, 135, 164509.	1.2	19
219	Solvation structures of protons and hydroxide ions in water. Journal of Chemical Physics, 2013, 138, 154506.	1.2	19
220	X-ray absorption spectroscopy using a self-seeded soft X-ray free-electron laser. Optics Express, 2016, 24, 22469.	1.7	19
221	What Does Nitric Acid Really Do to Carbon Nanofibers?. Journal of Physical Chemistry C, 2016, 120, 22655-22662.	1.5	19
222	Dopant Mediated Assembly of Cu ₂ ZnSnS ₄ Nanorods into Atomically Coupled 2D Sheets in Solution. Nano Letters, 2017, 17, 3421-3428.	4.5	19
223	Separate measurement of the 5f5/2 and 5f7/2 unoccupied density of states of UO2. Journal of Electron Spectroscopy and Related Phenomena, 2019, 232, 100-104.	0.8	19
224	EXAFS as a probe of actinide oxide formation in the tender X-ray regime. Surface Science, 2020, 698, 121607.	0.8	19
225	Distinct Surface and Bulk Thermal Behaviors of LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂ Cathode Materials as a Function of State of Charge. ACS Applied Materials & Samp; Interfaces, 2020, 12, 11643-11656.	4.0	19
226	Observation of 5f intermediate coupling in uranium x-ray emission spectroscopy. Journal of Physics Communications, 2020, 4, 015013.	0.5	19
227	Increased fraction of low-density structures in aqueous solutions of fluoride. Journal of Chemical Physics, 2011, 134, 224507.	1.2	18
228	Scalable Low-Cost Fabrication of Disposable Paper Sensors for DNA Detection. ACS Applied Materials & Samp; Interfaces, 2014, 6, 22751-22760.	4.0	18
229	Relating Electronic and Geometric Structure of Atomic Layer Deposited BaTiO ₃ to its Electrical Properties. Journal of Physical Chemistry Letters, 2016, 7, 1428-1433.	2.1	18
230	Sulfur $\hat{Kl^2}$ X-ray emission spectroscopy: comparison with sulfur K-edge X-ray absorption spectroscopy for speciation of organosulfur compounds. Physical Chemistry Chemical Physics, 2021, 23, 4500-4508.	1.3	18
231	Low Exciton Binding Energies and Localized Exciton–Polaron States in 2D Tin Halide Perovskites. Advanced Optical Materials, 2022, 10, .	3.6	18
232	The Role of Heat Treatment in Enhanced Activity of Manganese Oxides for the Oxygen Reduction and Evolution Reactions. ECS Transactions, 2013, 58, 735-750.	0.3	17
233	Electronic structure study of the CdS buffer layer in CIGS solar cells by X-ray absorption spectroscopy: Experiment and theory. Solar Energy Materials and Solar Cells, 2016, 149, 275-283.	3.0	17
234	Substrate-Dependent Study of Chain Orientation and Order in Alkylphosphonic Acid Self-Assembled Monolayers for ALD Blocking. Langmuir, 2020, 36, 12849-12857.	1.6	17

#	Article	IF	CITATIONS
235	[(MeCN)Ni(CF ₃) ₃] ^{â^'} and [Ni(CF ₃) ₄] ^{2â€"} : Foundations toward the Development of Trifluoromethylations at Unsupported Nickel. Inorganic Chemistry, 2020, 59, 9143-9151.	1.9	17
236	Disrupted Attosecond Charge Carrier Delocalization at a Hybrid Organic/Inorganic Semiconductor Interface. Journal of Physical Chemistry Letters, 2015, 6, 1935-1941.	2.1	16
237	Spectroscopic investigation of nitrogenâ€functionalized carbon materials. Surface and Interface Analysis, 2016, 48, 283-292.	0.8	16
238	Reversible Mn/Cr dual redox in cation-disordered Li-excess cathode materials for stable lithium ion batteries. Acta Materialia, 2021, 212, 116935.	3.8	16
239	Spectroscopic evidence for the formation of 3-D crystallites during isothermal heating of amorphous ice on Pt(111). Surface Science, 2008, 602, 2004-2008.	0.8	15
240	Tuning the Metal–Adsorbate Chemical Bond through the Ligand Effect on Platinum Subsurface Alloys. Angewandte Chemie - International Edition, 2012, 51, 7724-7728.	7.2	15
241	Dynamical Orientation of Large Molecules on Oxide Surfaces and its Implications for Dye-Sensitized Solar Cells. Chemistry of Materials, 2013, 25, 4354-4363.	3.2	15
242	Intensity modulation of the Shirley background of the Cr $3 < i > p < /i >$ spectra with photon energies around the Cr $2 < i > p < /i >$ edge. Surface and Interface Analysis, 2018, 50, 246-252.	0.8	15
243	Understanding the critical chemistry to inhibit lithium consumption in lean lithium metal composite anodes. Journal of Materials Chemistry A, 2018, 6, 16003-16011.	5.2	15
244	Chemical Modulation of Local Transition Metal Environment Enables Reversible Oxygen Redox in Mn-Based Layered Cathodes. ACS Energy Letters, 2021, 6, 2882-2890.	8.8	15
245	CoTiO _x Catalysts for the Oxygen Evolution Reaction. Journal of the Electrochemical Society, 2015, 162, H841-H846.	1.3	14
246	Anti-Stokes resonant x-ray Raman scattering for atom specific and excited state selective dynamics. New Journal of Physics, 2016, 18, 103011.	1.2	14
247	Plasma jet based <i>in situ</i> reduction of copper oxide in direct write printing. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, .	0.6	14
248	Carrier-specific dynamics in 2H-MoTe2 observed by femtosecond soft x-ray absorption spectroscopy using an x-ray free-electron laser. Structural Dynamics, 2021, 8, 014501.	0.9	14
249	Plasma jet printing of metallic patterns in zero gravity. Flexible and Printed Electronics, 2022, 7, 025016.	1.5	14
250	Direct Measurement of Acceptor Group Localization on Donor–Acceptor Polymers Using Resonant Auger Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 5570-5578.	1.5	13
251	Optical laser-induced CO desorption from Ru(0001) monitored with a free-electron X-ray laser: DFT prediction and X-ray confirmation of a precursor state. Surface Science, 2015, 640, 80-88.	0.8	13
252	Hybridizationâ€Induced Carrier Localization at the C ₆₀ /ZnO Interface. Advanced Materials, 2016, 28, 3960-3965.	11.1	13

#	Article	IF	CITATIONS
253	Synthesis and characterization of metastable, 20 nm-sized Pna 2 1 -LiCoPO 4 nanospheres. Journal of Solid State Chemistry, 2017, 248, 9-17.	1.4	13
254	Surface Characterization of Li-Substituted Compositionally Heterogeneous NaLi _{0.045} Cu _{0.185} Fe _{0.265} Mn _{0.505} O ₂ Sodium-lon Cathode Material. Journal of Physical Chemistry C, 2019, 123, 11428-11435.	1.5	13
255	Tailoring Disordered/Ordered Phases to Revisit the Degradation Mechanism of Highâ€Voltage LiNi _{0.5} Mn _{1.5} O ₄ Spinel Cathode Materials. Advanced Functional Materials, 2022, 32, .	7.8	13
256	On the valence fluctuation in the early actinide metals. Journal of Electron Spectroscopy and Related Phenomena, 2016, 207, 14-18.	0.8	12
257	Atmospheric Pressure Plasma Printing of Nanomaterials for <i>IoT</i> Applications. IEEE Open Journal of Nanotechnology, 2020, 1, 47-56.	0.9	12
258	The origin of impedance rise in Ni-Rich positive electrodes for lithium-ion batteries. Journal of Power Sources, 2021, 498, 229885.	4.0	12
259	Carrier gradients and the role of charge selective contacts in lateral heterojunction all back contact perovskite solar cells. Cell Reports Physical Science, 2021, 2, 100520.	2.8	12
260	Tailoring Transitionâ€Metal Hydroxides and Oxides by Photonâ€Induced Reactions. Angewandte Chemie - International Edition, 2016, 55, 14272-14276.	7.2	11
261	Carbon Core Electron Spectra of Polycyclic Aromatic Hydrocarbons. Journal of Physical Chemistry A, 2018, 122, 5730-5734.	1.1	11
262	Bulk and surface structural changes in high nickel cathodes subjected to fast charging conditions. Chemical Communications, 2020, 56, 6973-6976.	2.2	11
263	Towards the Quantification of 5f Delocalization. Applied Sciences (Switzerland), 2020, 10, 2918.	1.3	11
264	A high-throughput energy-dispersive tender X-ray spectrometer for shot-to-shot sulfur measurements. Journal of Synchrotron Radiation, 2019, 26, 629-634.	1.0	11
265	Nanocrystal Superlattice Embedded within an Inorganic Semiconducting Matrix by in Situ Ligand Exchange: Fabrication and Morphology. Chemistry of Materials, 2015, 27, 2755-2758.	3.2	10
266	Long-term chemothermal stability of delithiated NCA in polymer solid-state batteries. Journal of Materials Chemistry A, 2019, 7, 27135-27147.	5.2	10
267	Sub-molecular structural relaxation at a physisorbed interface with monolayer organic single-crystal semiconductors. Communications Physics, 2020, 3, .	2.0	10
268	Investigating Particle Sizeâ€Dependent Redox Kinetics and Charge Distribution in Disordered Rocksalt Cathodes. Advanced Functional Materials, 2022, 32, .	7.8	10
269	Real-Time Elucidation of Catalytic Pathways in CO Hydrogenation on Ru. Journal of Physical Chemistry Letters, 2017, 8, 3820-3825.	2.1	9
270	Two-photon absorption of soft X-ray free electron laser radiation by graphite near the carbon K-absorption edge. Chemical Physics Letters, 2018, 703, 112-116.	1.2	9

#	Article	IF	Citations
271	Hybrid X-ray Spectroscopy-Based Approach To Acquire Chemical and Structural Information of Single-Walled Carbon Nanotubes with Superior Sensitivity. Journal of Physical Chemistry C, 2019, 123, 6114-6120.	1.5	9
272	Thickness dependence of the L2,3 branching ratio of Cr thin films. Journal of Alloys and Compounds, 2010, 508, 233-237.	2.8	8
273	Morphological and chemical changes of aerosolized <i>E. coli</i> treated with a dielectric barrier discharge. Biointerphases, 2016, 11, 011009.	0.6	8
274	Time-resolved x-ray photoelectron spectroscopy techniques for real-time studies of interfacial charge transfer dynamics. AIP Conference Proceedings, 2013, , .	0.3	7
275	Solidâ€State Conversion Reaction to Enhance Charge Transfer in Electrochromic Materials. Advanced Materials Interfaces, 2015, 2, 1400523.	1.9	7
276	Co ₁₁ Li[(OH) ₅ O][(PO ₃ OH)(PO ₄) ₅], a Lithium-Stabilized, Mixed-Valent Cobalt(II,III) Hydroxide Phosphate Framework. Inorganic Chemistry, 2017, 56, 10950-10961.	1.9	7
277	Laser power meters as an X-ray power diagnostic for LCLS-II. Journal of Synchrotron Radiation, 2018, 25, 72-76.	1.0	7
278	Resolving Charge Distribution for Compositionally Heterogeneous Battery Cathode Materials. Nano Letters, 2022, 22, 1278-1286.	4.5	7
279	Bulk electronic structure of K3C6O as revealed by soft x-rays. Physical Review B, 2007, 75, .	1.1	6
280	Spectroscopic differentiation between O-atom vacancy and divacancy defects, respectively, in TiO2 and HfO2 by X-ray absorption spectroscopy. Microelectronic Engineering, 2009, 86, 1676-1679.	1.1	6
281	First demonstration of device-quality symmetric N-MOS and P-MOS capacitors on p-type and n-type crystalline Ge substrates. Microelectronic Engineering, 2013, 109, 370-373.	1.1	6
282	Characterization of electronic structure of periodically strained graphene. Applied Physics Letters, 2015, 107, .	1.5	6
283	Direct synthesis and characterization of mixed-valent Li _{0.5a^Î<} CoPO ₄ , a Li-deficient derivative of the Cmcm polymorph of LiCoPO ₄ . RSC Advances, 2017, 7, 28069-28081.	1.7	6
284	Efficacy of atmospheric pressure dielectric barrier discharge for inactivating airborne pathogens. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, 041101.	0.9	6
285	Electronic Structure of Naturally Occurring Aromatic Carbon. Energy & 2019, 33, 2099-2105.	2.5	6
286	High capacity Li/Ni rich Ni-Ti-Mo oxide cathode for Li-ion batteries. Solid State Ionics, 2020, 345, 115172.	1.3	6
287	Short-Range Order Tunes Optical Properties in Long-Range Disordered ZnSnN ₂ –ZnO Alloy. Chemistry of Materials, 2022, 34, 3910-3919.	3.2	6
288	Stability of Pt-Modified $Cu(111)$ in the Presence of Oxygen and Its Implication on the Overall Electronic Structure. Journal of Physical Chemistry C, 2013, 117, 16371-16380.	1.5	5

#	Article	IF	Citations
289	High-resolution x-ray-emission study of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1</mml:mn><mml:mi>s</mml:mi> xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1</mml:mn><mml:mi>s</mml:mi> photoexcitations in Kr. Physical Review A, 2014, 90, .</mml:mrow></mml:mrow></mml:math>	<mml:mn></mml:mn>	>4>3
290	Anomalous dispersion and band gap reduction in UO2+ and its possible coupling to the coherent polaronic quantum state. Nuclear Instruments & Methods in Physics Research B, 2016, 374, 45-50.	0.6	5
291	Closure of the Mott gap and formation of a superthermal metal in the Fr \tilde{A} ¶hlich-type nonequilibrium polaron Bose-Einstein condensate in UO2+x. Physical Review B, 2017, 96, .	1.1	5
292	Revealing the inhomogeneous surface chemistry on the spherical layered oxide polycrystalline cathode particles*. Chinese Physics B, 2020, 29, 026103.	0.7	5
293	Promoting Bandlike Transport in Well-Defined and Highly Conducting Polymer Thin Films upon Controlling Dopant Oxidation Levels and Polaron Effects. ACS Applied Polymer Materials, 2021, 3, 2938-2949.	2.0	5
294	Ge doped HfO2 thin films investigated by x-ray absorption spectroscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 693-696.	0.9	4
295	Synthesis and X-ray absorption spectroscopy of potassium transition metal fluoride nanocrystals. CrystEngComm, 2019, 21, 135-144.	1.3	4
296	Understanding the dopant induced effects on SFX-MeOTAD for perovskite solar cells: a spectroscopic and computational investigation. Journal of Materials Chemistry C, 2021, 9, 16226-16239.	2.7	4
297	A core-level spectroscopic investigation of the preparation and electrochemical cycling of nitrogen-modified carbon as a model catalyst support. Journal of Materials Chemistry A, 2016, 4, 443-450.	5.2	3
298	In-situ functionalization of tetrahedral amorphous carbon by filtered cathodic arc deposition. AIP Advances, 2019, 9, 085325.	0.6	3
299	Ultrafast epitaxial growth of CuO nanowires using atmospheric pressure plasma with enhanced electrocatalytic and photocatalytic activities. Nano Select, 2022, 3, 627-642.	1.9	3
300	Mapping chemical bonding of reaction intermediates with femtosecond X-ray laser spectroscopy. EPJ Web of Conferences, 2013, 41, 05025.	0.1	3
301	Quantifying the Steric Effect on Metal–Ligand Bonding in Fe Carbene Photosensitizers with Fe 2p3d Resonant Inelastic X-ray Scattering. Inorganic Chemistry, 2022, 61, 1961-1972.	1.9	3
302	Metastable Brominated Nanodiamond Surface Enables Room Temperature and Catalysis-Free Amine Chemistry. Journal of Physical Chemistry Letters, 2022, 13, 1147-1158.	2.1	3
303	Tailoring Transitionâ€Metal Hydroxides and Oxides by Photonâ€Induced Reactions. Angewandte Chemie, 2016, 128, 14484-14488.	1.6	2
304	Atom-specific activation in CO oxidation. Journal of Chemical Physics, 2018, 149, 234707.	1.2	2
305	Laser power meters as portable x-ray power monitors. , 2019, , .		2
306	Monoclinic textured HfO2 films on GeOxNy/Ge(100) stacks using interface reconstruction by controlled thermal processing. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 662-664.	0.9	1

#	Article	IF	Citations
307	Effect of Temperature Treatment on CoTiOx Catalyst for the Oxygen Evolution Reaction. ECS Transactions, 2013, 58, 285-291.	0.3	1
308	Chemically directing d-block heterometallics to nanocrystal surfaces as molecular beacons of surface structure. Chemical Science, 2015, 6, 6295-6304.	3.7	1
309	A novel method for resonant inelastic soft X-ray scattering (i) photoelectron spectroscopy detection. Journal of Synchrotron Radiation, 2017, 24, 1180-1186.	1.0	1
310	Modulation of Carrier Type in Nanocrystal-in-Matrix Composites by Interfacial Doping. Chemistry of Materials, 2018, 30, 2544-2549.	3.2	1
311	Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. , 0, .		1
312	Manipulating Interfacial Dissolution–Redeposition Dynamics to Resynthesize Electrode Surface Chemistry. ACS Energy Letters, 0, , 2588-2594.	8.8	1
313	Application of non-linear optical second harmonic generation and X-ray absorption and spectroscopies to defect related properties of Hf silicate and Hf Si oxynitride gate dielectrics. Microelectronic Engineering, 2009, 86, 1654-1657.	1.1	0
314	Probing homogenous ice nucleation within supercooled bulk water droplet in "no man's land" with an ultrafast X-ray laser. , $2013, \ldots$		0
315	High Energy Resolution X-ray Spectroscopy at SSRL and LCLS: Instruments and Applications. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C223-C223.	0.0	0
316	Investigation of nanoparticulate silicon as printed layers using scanning electron microscopy, transmission electron microscopy, X-ray absorption spectroscopy and X-ray photoelectron spectroscopy. Journal of Synchrotron Radiation, 2017, 24, 1017-1023.	1.0	0
317	Soft X-ray absorption spectroscopy investigation of the surface chemistry and treatments of copper indium gallium diselenide (CIGS). Solar Energy Materials and Solar Cells, 2017, 160, 390-397.	3.0	0
318	Ultrafast Carrier Dynamics in Two-Dimensional Electron Gas-like K-Doped MoS ₂ . Journal of Physical Chemistry C, 2020, 124, 19187-19195.	1.5	0