Shulin Ji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/216694/publications.pdf

Version: 2024-02-01

430442 552369 1,193 26 18 26 citations h-index g-index papers 27 27 27 2142 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Fracture behaviour of silver nanowire films during shear deformation. Nanotechnology, 2022, 33, 375706.	1.3	1
2	Structural manipulation of silver nanowire transparent conductive films for optoelectrical property optimization in different application fields. Thin Solid Films, 2021, 729, 138679.	0.8	7
3	2D foaming of ultrathin MXene sheets with highly conductive silver nanowires for wearable electromagnetic interference shielding applications owing to multiple reflections within created free space. Nano Futures, 2020, 4, 035002.	1.0	16
4	Highly accurate particulate matter detection assisted by an air heater based on a silver nanowire film. Nanotechnology, 2019, 30, 485204.	1.3	3
5	Tackling the Stability Issues of Silver Nanowire Transparent Conductive Films through FeCl3 Dilute Solution Treatment. Nanomaterials, 2019, 9, 533.	1.9	20
6	Sandwich-Structured Silver Nanowire Transparent Conductive Films with 3H Hardness and Robust Flexibility for Potential Applications in Curved Touch Screens. Nanomaterials, 2019, 9, 557.	1.9	11
7	High-purity very thin silver nanowires obtained by Ostwald ripening-driven coarsening and sedimentation of nanoparticles. CrystEngComm, 2018, 20, 2834-2840.	1.3	34
8	Formulation of concentrated and stable ink of silver nanowires with applications in transparent conductive films. RSC Advances, 2017, 7, 1936-1942.	1.7	26
9	Fabrication of silver nanowire transparent conductive films with an ultra-low haze and ultra-high uniformity and their application in transparent electronics. Journal of Materials Chemistry C, 2017, 5, 2240-2246.	2.7	74
10	Synthesis of very thin Ag nanowires with fewer particles by suppressing secondary seeding. CrystEngComm, 2017, 19, 148-153.	1.3	45
11	<i>In situ</i> metal doping during modified anodization synthesis of Nb ₂ O ₅ with enhanced photoelectrochemical water splitting. AICHE Journal, 2016, 62, 352-358.	1.8	16
12	Silver Nanowire Transparent Conductive Films with High Uniformity Fabricated via a Dynamic Heating Method. ACS Applied Materials & Samp; Interfaces, 2016, 8, 9865-9871.	4.0	95
13	Study on hole-transport-material-free planar TiO ₂ /CH ₃ NH ₃ PbI ₃ heterojunction solar cells: the simplest configuration of a working perovskite solar cell. Journal of Materials Chemistry A, 2015, 3, 14902-14909.	5.2	40
14	Flexible Si/PEDOT:PSS hybrid solar cells. Nano Research, 2015, 8, 3141-3149.	5. 8	27
15	Infrared response of self-heating VO ₂ nanoparticles film based on Ag nanowires heater. Journal of Materials Chemistry A, 2014, 2, 20470-20473.	5. 2	46
16	On the stability of CdSe quantum dot-sensitized solar cells. RSC Advances, 2014, 4, 15702.	1.7	14
17	Flexible, in-plane, and all-solid-state micro-supercapacitors based on printed interdigital Au/polyaniline network hybrid electrodes on a chip. Journal of Materials Chemistry A, 2014, 2, 20916-20922.	5.2	72
18	Thermal Response of Transparent Silver Nanowire/PEDOT:PSS Film Heaters. Small, 2014, 10, 4951-4960.	5.2	232

Shulin Ji

#	Article	IF	CITATION
19	A one-step route to Ag nanowires with a diameter below 40 nm and an aspect ratio above 1000. Chemical Communications, 2014, 50, 14877-14880.	2.2	89
20	The synthesis of monodispersed AgBiS2 quantum dots with a giant dielectric constant. CrystEngComm, 2013, 15, 7644.	1.3	30
21	A Route to Phase Controllable Cu2ZnSn(S1â^'xSex)4 Nanocrystals with Tunable Energy Bands. Scientific Reports, 2013, 3, 2733.	1.6	73
22	Synthesis, characterization, and surface-enhanced Raman scattering of near infrared absorbing Cu3SbS3 nanocrystals. CrystEngComm, 2013, 15, 10431.	1.3	35
23	Interface engineering: Boosting the energy conversion efficiencies for nanostructured solar cells. Pure and Applied Chemistry, 2012, 84, 2653-2675.	0.9	29
24	Effect of ZnS and CdS coating on the photovoltaic properties of CuInS2-sensitized photoelectrodes. Journal of Materials Chemistry, 2012, 22, 4890.	6.7	66
25	Synthesis of Rare Earth Ions-Doped ZnO Nanostructures with Efficient Hostâ^'Guest Energy Transfer. Journal of Physical Chemistry C, 2009, 113, 16439-16444.	1.5	76
26	A facile method for effective doping of Tb3+ into ZnO nanocrystals. Chemical Communications, 2009, , 2344.	2.2	16