
Huiyuan Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2166914/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO ₂ and In ₂ O ₃ nanoparticles. Environmental Science: Nano, 2016, 3, 1369-1379.	4.3	131
2	Analysis of Silver Nanoparticles in Antimicrobial Products Using Surface-Enhanced Raman Spectroscopy (SERS). Environmental Science & amp; Technology, 2015, 49, 4317-4324.	10.0	98
3	Comparative impacts of iron oxide nanoparticles and ferric ions on the growth of Citrus maxima. Environmental Pollution, 2017, 221, 199-208.	7.5	93
4	Effect of co-existing kaolinite and goethite on the aggregation of graphene oxide in the aquatic environment. Water Research, 2016, 102, 313-320.	11.3	72
5	Maize (Zea mays L.) root exudates modify the surface chemistry of CuO nanoparticles: Altered aggregation, dissolution and toxicity. Science of the Total Environment, 2019, 690, 502-510.	8.0	67
6	Interaction of Î ³ -Fe2O3 nanoparticles with Citrus maxima leaves and the corresponding physiological effects via foliar application. Journal of Nanobiotechnology, 2017, 15, 51.	9.1	65
7	Carbon dots alleviate the toxicity of cadmium ions (Cd ²⁺) toward wheat seedlings. Environmental Science: Nano, 2019, 6, 1493-1506.	4.3	54
8	Applications of surface-enhanced Raman spectroscopy in the analysis of nanoparticles in the environment. Environmental Science: Nano, 2017, 4, 2093-2107.	4.3	47
9	Distribution of different surface modified carbon dots in pumpkin seedlings. Scientific Reports, 2018, 8, 7991.	3.3	43
10	Surface-enhanced Raman scattering detection of silver nanoparticles in environmental and biological samples. Science of the Total Environment, 2016, 554-555, 246-252.	8.0	37
11	Real-Time Monitoring of Pesticide Translocation in Tomato Plants by Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2019, 91, 2093-2099.	6.5	37
12	Bioaccessibility and exposure assessment of trace metals from urban airborne particulate matter (PM10 and PM2.5) in simulated digestive fluid. Environmental Pollution, 2018, 242, 1669-1677.	7.5	35
13	Microbial Transformation of Multiwalled Carbon Nanotubes by <i>Mycobacterium vanbaalenii</i> PYR-1. Environmental Science & Technology, 2017, 51, 2068-2076.	10.0	34
14	Graphene oxide mediated reduction of silver ions to silver nanoparticles under environmentally relevant conditions: Kinetics and mechanisms. Science of the Total Environment, 2019, 679, 270-278.	8.0	27
15	Development of a filter-based method for detecting silver nanoparticles and their heteroaggregation in aqueous environments by surface-enhanced Raman spectroscopy. Environmental Pollution, 2016, 211, 198-205.	7.5	23
16	Applications of surfaceâ€enhanced Raman spectroscopy in environmental detection. Analytical Science Advances, 2022, 3, 113-145.	2.8	22
17	Evaluation of Postharvest Washing on Removal of Silver Nanoparticles (AgNPs) from Spinach Leaves. Journal of Agricultural and Food Chemistry, 2016, 64, 6916-6922.	5.2	17
18	Dual roles of glutathione in silver nanoparticle detoxification and enhancement of nitrogen assimilation in soybean (<i>Glycine max</i> (L) Merrill). Environmental Science: Nano, 2020, 7, 1954-1966.	4.3	16

Huiyuan Guo

#	Article	IF	CITATIONS
19	Transformation of Ag ions into Ag nanoparticle-loaded AgCl microcubes in the plant root zone. Environmental Science: Nano, 2019, 6, 1099-1110.	4.3	15
20	Reduction of silver ions to silver nanoparticles by biomass and biochar: Mechanisms and critical factors. Science of the Total Environment, 2021, 779, 146326.	8.0	15
21	Ultra-sensitive determination of silver nanoparticles by surface-enhanced Raman spectroscopy (SERS) after hydrophobization-mediated extraction. Analyst, The, 2016, 141, 5261-5264.	3.5	14
22	Bromide ion-functionalized nanoprobes for sensitive and reliable pH measurement by surface-enhanced Raman spectroscopy. Analyst, The, 2019, 144, 7326-7335.	3.5	12
23	A field-deployable surface-enhanced Raman scattering (SERS) method for sensitive analysis of silver nanoparticles in environmental waters. Science of the Total Environment, 2019, 653, 1034-1041.	8.0	12
24	Mapping gold nanoparticles on and in edible leaves in situ using surface enhanced Raman spectroscopy. RSC Advances, 2016, 6, 60152-60159.	3.6	10
25	Formation of silver nanoparticles in aquatic environments facilitated by algal extracellular polymeric substances: Importance of chloride ions and light. Science of the Total Environment, 2021, 775, 145867.	8.0	7
26	New insight into naturally formed nanosilver particles: role of plant root exudates. Environmental Science: Nano, 2021, 8, 1580-1592.	4.3	6
27	Rapid organic solvent extraction coupled with surface enhanced Raman spectroscopic mapping for ultrasensitive quantification of foliarly applied silver nanoparticles in plant leaves. Environmental Science: Nano, 2020, 7, 1061-1067.	4.3	5
28	Reply to Colussi: Microdroplet interfacial pH, the ongoing discussion. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7888-E7889.	7.1	2
29	Practical SERS method for assessment of the washing durability of textiles containing silver nanoparticles. Analytical Methods, 2020, 12, 1186-1196.	2.7	2