
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2166381/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MicroRNA Regulation of Atherosclerosis. Circulation Research, 2016, 118, 703-720.	2.0	502
2	MicroRNA-181b regulates NF-κB–mediated vascular inflammation. Journal of Clinical Investigation, 2012, 122, 1973-90.	3.9	398
3	The Kruppel-like factor KLF4 is a critical regulator of monocyte differentiation. EMBO Journal, 2007, 26, 4138-4148.	3.5	271
4	Systemic Delivery of MicroRNA-181b Inhibits Nuclear Factor-κB Activation, Vascular Inflammation, and Atherosclerosis in Apolipoprotein E–Deficient Mice. Circulation Research, 2014, 114, 32-40.	2.0	263
5	Kruppel-like Factor 4 Is a Mediator of Proinflammatory Signaling in Macrophages. Journal of Biological Chemistry, 2005, 280, 38247-38258.	1.6	259
6	MicroRNA-26a Regulates Pathological and Physiological Angiogenesis by Targeting BMP/SMAD1 Signaling. Circulation Research, 2013, 113, 1231-1241.	2.0	196
7	Role of miR-181 family in regulating vascular inflammation and immunity. Trends in Cardiovascular Medicine, 2014, 24, 105-112.	2.3	151
8	Emerging Roles for MicroRNAs in Diabetic Microvascular Disease: Novel Targets for Therapy. Endocrine Reviews, 2017, 38, 145-168.	8.9	141
9	miRNAs in atherosclerotic plaque initiation, progression, and rupture. Trends in Molecular Medicine, 2015, 21, 307-318.	3.5	134
10	Role of Krüppel-like factors in leukocyte development, function, and disease. Blood, 2010, 116, 4404-4414.	0.6	133
11	LncRNAs in vascular biology and disease. Vascular Pharmacology, 2019, 114, 145-156.	1.0	133
12	Endothelial MicroRNAs and Atherosclerosis. Current Atherosclerosis Reports, 2013, 15, 372.	2.0	117
13	A macrophage-specific IncRNA regulates apoptosis and atherosclerosis by tethering HuR in the nucleus. Nature Communications, 2020, 11, 6135.	5.8	113
14	MicroRNA-181b Improves Glucose Homeostasis and Insulin Sensitivity by Regulating Endothelial Function in White Adipose Tissue. Circulation Research, 2016, 118, 810-821.	2.0	108
15	Regulation of impaired angiogenesis in diabetic dermal wound healing by microRNA-26a. Journal of Molecular and Cellular Cardiology, 2016, 91, 151-159.	0.9	93
16	Long noncoding RNA <i>SNHG12</i> integrates a DNA-PK–mediated DNA damage response and vascular senescence. Science Translational Medicine, 2020, 12, .	5.8	91
17	Kruppel-like Factor KLF10 Targets Transforming Growth Factor-β1 to Regulate CD4+CD25â^' T Cells and T Regulatory Cells. Journal of Biological Chemistry, 2009, 284, 24914-24924.	1.6	90
18	Essential Role for Smad3 in Regulating MCP-1 Expression and Vascular Inflammation. Circulation Research, 2004, 94, 601-608.	2.0	89

#	Article	IF	CITATIONS
19	An Emerging Role for Krüppel-Like Factors in Vascular Biology. Trends in Cardiovascular Medicine, 2004, 14, 241-246.	2.3	74
20	MicroRNA-615-5p Regulates Angiogenesis and Tissue Repair by Targeting AKT/eNOS (Protein Kinase) Tj ETQq0 C Vascular Biology, 2019, 39, 1458-1474.) 0 rgBT /C 1.1	Overlock 10 Tf 72
21	An emerging role for the miR-26 family in cardiovascular disease. Trends in Cardiovascular Medicine, 2014, 24, 241-248.	2.3	65
22	LncRNA Meg3 protects endothelial function by regulating the DNA damage response. Nucleic Acids Research, 2019, 47, 1505-1522.	6.5	64
23	Long noncoding RNAs in cardiovascular disease, diagnosis, and therapy. Current Opinion in Cardiology, 2017, 32, 776-783.	0.8	63
24	Embryonic Expression Suggests an Important Role for CRP2/SmLIM in the Developing Cardiovascular System. Circulation Research, 1998, 83, 980-985.	2.0	59
25	Computational Analysis of Targeting SARS-CoV-2, Viral Entry Proteins ACE2 and TMPRSS2, and Interferon Genes by Host MicroRNAs. Genes, 2020, 11, 1354.	1.0	56
26	MicroRNAâ€135aâ€3p regulates angiogenesis and tissue repair by targeting p38 signaling in endothelial cells. FASEB Journal, 2019, 33, 5599-5614.	0.2	53
27	LncRNA VINAS regulates atherosclerosis by modulating NF-κB and MAPK signaling. JCI Insight, 2020, 5, .	2.3	53
28	Bone marrow–derived CMPs and GMPs represent highly functional proangiogenic cells: implications for ischemic cardiovascular disease. Blood, 2011, 118, 6461-6464.	0.6	47
29	TGF-β1 signaling and Krüppel-like factor 10 regulate bone marrow–derived proangiogenic cell differentiation, function, and neovascularization. Blood, 2011, 118, 6450-6460.	0.6	44
30	Long Noncoding RNAs in Atherosclerosis and Vascular Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2002-2017.	1.1	44
31	MicroRNAs in dysfunctional adipose tissue: cardiovascular implications. Cardiovascular Research, 2017, 113, 1024-1034.	1.8	42
32	MicroRNAâ€181b inhibits thrombinâ€mediated endothelial activation and arterial thrombosis by targeting caspase recruitment domain family member 10. FASEB Journal, 2016, 30, 3216-3226.	0.2	38
33	MicroRNAs in diabetic wound healing: Pathophysiology and therapeutic opportunities. Trends in Cardiovascular Medicine, 2019, 29, 131-137.	2.3	38
34	Targeting LncRNAs in Cardiovascular Disease. Circulation Research, 2017, 120, 620-623.	2.0	36
35	A Smooth Muscle Cell–Enriched Long Noncoding RNA Regulates Cell Plasticity and Atherosclerosis by Interacting With Serum Response Factor. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2399-2416.	1.1	30
36	KLF10 Deficiency in CD4+ T Cells Triggers Obesity, Insulin Resistance, and Fatty Liver. Cell Reports, 2020, 33, 108550.	2.9	30

3

#	Article	IF	CITATIONS
37	Vascular Endothelial Senescence: Pathobiological Insights, Emerging Long Noncoding RNA Targets, Challenges and Therapeutic Opportunities. Frontiers in Physiology, 2021, 12, 693067.	1.3	29
38	Long non-coding RNA Meg3 deficiency impairs glucose homeostasis and insulin signaling by inducing cellular senescence of hepatic endothelium in obesity. Redox Biology, 2021, 40, 101863.	3.9	27
39	Noncoding RNAs in Critical Limb Ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 523-533.	1.1	25
40	NLRC5 inhibits neointima formation following vascular injury and directly interacts with PPARÎ ³ . Nature Communications, 2019, 10, 2882.	5.8	24
41	Bone Marrow–Derived Kruppel-Like Factor 10 Controls Reendothelialization in Response to Arterial Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1552-1560.	1.1	23
42	Long Non-Coding RNAs in Vascular Inflammation. Frontiers in Cardiovascular Medicine, 2018, 5, 22.	1.1	22
43	Regulation of Endothelial Cell Metabolism. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 13-15.	1.1	20
44	LncRNAâ€MAP3K4 regulates vascular inflammation through the p38 MAPK signaling pathway and <i>cis</i> â€modulation of MAP3K4. FASEB Journal, 2021, 35, e21133.	0.2	20
45	MicroRNA-Management of Lipoprotein Homeostasis. Circulation Research, 2014, 115, 2-6.	2.0	16
46	MiR-4674 regulates angiogenesis in tissue injury by targeting p38K signaling in endothelial cells. American Journal of Physiology - Cell Physiology, 2020, 318, C524-C535.	2.1	16
47	Noncoding RNAs: biology and applications—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 118-141.	1.8	13
48	Long Noncoding RNAs as Therapeutic Targets. Advances in Experimental Medicine and Biology, 2022, 1363, 161-175.	0.8	13
49	Gene Expression Signature in Patients With Symptomatic Peripheral Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1521-1533.	1.1	12
50	MiR-409-3p targets a MAP4K3-ZEB1-PLGF signaling axis and controls brown adipose tissue angiogenesis and insulin resistance. Cellular and Molecular Life Sciences, 2021, 78, 7663-7679.	2.4	12
51	Discovery of Small Molecule Inhibitors to Krüppel-like Factor 10 (KLF10): Implications for Modulation of T Regulatory Cell Differentiation. Journal of Medicinal Chemistry, 2015, 58, 1466-1478.	2.9	10
52	No small task: therapeutic targeting of Lp(a) for cardiovascular disease. Lancet, The, 2016, 388, 2211-2212.	6.3	10
53	Regulatory T cells in ischemic cardiovascular injury and repair. Journal of Molecular and Cellular Cardiology, 2020, 147, 1-11.	0.9	10
54	The subcellular redistribution of NLRC5 promotes angiogenesis via interacting with STAT3 in endothelial cells. Theranostics, 2021, 11, 4483-4501.	4.6	10

#	Article	IF	CITATIONS
55	Methotrexate attenuates vascular inflammation through an adenosine-microRNA-dependent pathway. ELife, 2021, 10, .	2.8	9
56	Deficiency of lncRNA SNHG12 impairs ischemic limb neovascularization by altering an endothelial cell cycle pathway. JCI Insight, 2022, 7, .	2.3	8
57	MicroRNA-17-3p suppresses NF-κB-mediated endothelial inflammation by targeting NIK and IKKβ binding protein. Acta Pharmacologica Sinica, 2021, 42, 2046-2057.	2.8	7
58	MicroRNA-mediated control of myocardial infarction in diabetes. Trends in Cardiovascular Medicine, 2023, 33, 195-201.	2.3	7
59	Perivascular Fibrosis Is Mediated by a KLF10-IL-9 Signaling Axis in CD4+ T Cells. Circulation Research, 2022, 130, 1662-1681.	2.0	6
60	Plasticity of Arterial and Venous Endothelial Cell Identity. Circulation Research, 2016, 119, 574-576.	2.0	5
61	Isolation and culture of murine aortic cells and RNA isolation of aortic intima and media: Rapid and optimized approaches for atherosclerosis research. Atherosclerosis, 2022, 347, 39-46.	0.4	5
62	Pulmonary Hypertension Is Associated With Systemic Arterial Hypertension Among Patients With Normal Left Ventricular Diastolic Function. Journal of the American Heart Association, 2021, 10, e023603.	1.6	5
63	miRâ€∎81b regulates vascular endothelial aging by modulating an MAP3K3 signaling pathway. FASEB Journal, 2022, 36, e22353.	0.2	5
64	Skeletal muscle expression of adipose-specific phospholipase in peripheral artery disease. Vascular Medicine, 2020, 25, 401-410.	0.8	4
65	Antirheumatic therapy is not associated with changes in circulating N-terminal pro-brain natriuretic peptide levels in patients with autoimmune arthritis. PLoS ONE, 2021, 16, e0253793.	1.1	4
66	Antirheumatic therapy is associated with reduced complement activation in rheumatoid arthritis. PLoS ONE, 2022, 17, e0264628.	1.1	4
67	Endothelial cell-specific deletion of a microRNA accelerates atherosclerosis. Atherosclerosis, 2022, 350, 9-18.	0.4	4
68	<i>>Fine-tuning innate and adaptive immune responses: another KLFhanger</i> . Focus on "Krüppel-like factor KLF10 regulates transforming growth factor receptor II expression and TGF-β signaling in CD8 ⁺ T lymphocytes― American Journal of Physiology - Cell Physiology, 2015, 308, C359-C361.	2.1	2
69	MicroRNAs as Harbingers of High-Risk Carotid Artery Atherosclerotic Disease?. Circulation Research, 2017, 120, 596-598.	2.0	2
70	Revisiting Hormonal Control of Vascular Injury and Repair. Circulation Research, 2020, 127, 1488-1490.	2.0	2
71	MicroRNAs as pathophysiological targets: An emerging nexus for personalized medicine in heart failure?. Trends in Cardiovascular Medicine, 2016, 26, 111-114.	2.3	1
72	Novel Lesional Transcriptional Signature Separates Atherosclerosis With and Without Diabetes in Yorkshire Swine and Humans. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1487-1503.	1.1	1

#	Article	IF	CITATIONS
73	Abstract 13202: LncRNA-MAP3K4 Regulates Vascular Inflammation Through a P38 MAPK Signaling Pathway and Cis -modulation of MAP3K4. Circulation, 2020, 142, .	1.6	1
74	A miRNA cassette reprograms smooth muscle cells into endothelial cells. FASEB Journal, 2022, 36, e22239.	0.2	1
75	Editorial commentary: Let it snow—Emerging roles for snoRNAs in cardiovascular disease. Trends in Cardiovascular Medicine, 2018, 28, 91-93.	2.3	0
76	Long Non-coding RNAs in Vascular Health and Disease. , 2019, , 151-179.		0
77	AB0343â€ANTIRHEUMATIC THERAPY IS NOT ASSOCIATED WITH CHANGES IN CIRCULATING N-TERMINAL PRO-BRAIN NATRIURETIC PEPTIDE (NT-PROBNP) LEVELS IN PATIENTS WITH RHEUMATOID ARTHRITIS. , 2019, , .		0
78	Editorial commentary: MicroRNAs as effectors and indicators of aspirin therapeutic potential. Trends in Cardiovascular Medicine, 2020, 30, 255-256.	2.3	0
79	Kruppel-Like Factor 10 (KLF10)-Deficient Mice Have Marked Defects In EPC Differentiation, Function, and Angiogenesis. Blood, 2010, 116, 4314-4314.	0.6	0
80	Abstract 13092: Regulation of SARS-CoV-2, Viral Entry Proteins ACE2 and TMPRSS2, and Interferon Genes by Host MicroRNAs. Circulation, 2020, 142, .	1.6	0
81	Abstract 13836: Long Noncoding Rna Meg3 Protects Against Hepatic Endothelial Senescence in Obesity by Regulating Mitochondrial Function. Circulation, 2020, 142, .	1.6	0
82	Abstract 12544: A miRNA Cassette for Reprogramming Vascular Smooth Muscle Cells Into Endothelial Cells. Circulation, 2021, 144, .	1.6	0
83	Abstract 11898: KLF10 Deficiency in CD4+ T Cells Exacerbates Angiotensin II-Induced Perivascular Fibrosis, Circulation, 2021, 144	1.6	0