Vaidyanathan Ravi Subramanian

List of Publications by Citations

Source:

https://exaly.com/author-pdf/2166345/vaidyanathan-ravi-subramanian-publications-by-citations.pdf **Version:** 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

58 6,783 29 62 g-index

62 7,179 7 5.96 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
58	Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. <i>Journal of the American Chemical Society</i> , 2004 , 126, 4943-50	16.4	1762
57	Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. <i>Journal of the American Chemical Society</i> , 2006 , 128, 2385-93	16.4	1621
56	SemiconductorMetal Composite Nanostructures. To What Extent Do Metal Nanoparticles Improve the Photocatalytic Activity of TiO2 Films?. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 11439-11446	3.4	824
55	Green Emission to Probe Photoinduced Charging Events in ZnOAu Nanoparticles. Charge Distribution and Fermi-Level Equilibration [] Journal of Physical Chemistry B, 2003, 107, 7479-7485	3.4	440
54	Influence of Metal/Metal Ion Concentration on the Photocatalytic Activity of TiO2Au Composite Nanoparticles. <i>Langmuir</i> , 2003 , 19, 469-474	4	304
53	Improved photocatalytic degradation of textile dye using titanium dioxide nanotubes formed over titanium wires. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	165
52	Investigation of Physicochemical Parameters That Influence Photocatalytic Degradation of Methyl Orange over TiO2 Nanotubes. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 10268-10276	3.9	134
51	Electrochemically assisted photocatalytic degradation of methyl orange using anodized titanium dioxide nanotubes. <i>Applied Catalysis B: Environmental</i> , 2008 , 84, 372-378	21.8	101
50	Band-Engineered Bismuth Titanate Pyrochlores for Visible Light Photocatalysis. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 10598-10605	3.8	100
49	Synthesis and UVII isible-Light Photoactivity of Noble-Metal IrTiO3 Composites. <i>Industrial & amp; Engineering Chemistry Research</i> , 2006 , 45, 2187-2193	3.9	97
48	Nature-Inspired Tree-Like TiO2 Architecture: A 3D Platform for the Assembly of CdS and Reduced Graphene Oxide for Photoelectrochemical Processes. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 7543-7	' <i>5</i> '53	63
47	Amino-functionalized and acid treated multi-walled carbon nanotubes as supports for electrochemical oxidation of formic acid. <i>Applied Catalysis B: Environmental</i> , 2011 , 103, 266-274	21.8	62
46	Mass-Transfer and Kinetic Studies during the Photocatalytic Degradation of an Azo Dye on Optically Transparent Electrode Thin Film. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 2131-2138	3.9	62
45	Encapsulating Bi2Ti2O7 (BTO) with reduced graphene oxide (RGO): an effective strategy to enhance photocatalytic and photoelectrocatalytic activity of BTO. <i>ACS Applied Materials & Interfaces</i> , 2014 , 6, 18597-608	9.5	60
44	1D CdS/PbS heterostructured nanowire synthesis using cation exchange. <i>Chemical Communications</i> , 2012 , 48, 2415-7	5.8	52
43	CdSe Nanocrystal Assemblies on Anodized TiO2 Nanotubes: Optical, Surface, and Photoelectrochemical Properties. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 15175-15184	3.8	52
42	Effects of acid accelerators on hydrogen generation from solid sodium borohydride using small scale devices. <i>Journal of Power Sources</i> , 2009 , 187, 216-223	8.9	48

(2016-2009)

41	Robust synthesis of bismuth titanate pyrochlore nanorods and their photocatalytic applications. <i>Chemical Communications</i> , 2009 , 5109-11	5.8	47	
40	Enhancing the visible light absorbance of Bi2Ti2O7 through Fe-substitution and its effects on photocatalytic hydrogen evolution. <i>Applied Catalysis B: Environmental</i> , 2014 , 144, 261-268	21.8	46	
39	Photoinduced transformations at semiconductor/metal interfaces: X-ray absorption studies of titania/gold films. <i>Journal of Applied Physics</i> , 2003 , 93, 2575-2582	2.5	46	
38	Heterostructural Composites of TiO2 MeshIIiO2 Nanoparticles Photosensitized with CdS: A New Flexible Photoanode for Solar Cells. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 8376-8385	3.8	45	
37	Inactivation of Human Coronavirus by Titania Nanoparticle Coatings and UVC Radiation: Throwing Light on SARS-CoV-2. <i>Viruses</i> , 2020 , 13,	6.2	45	
36	Sulfated Fe2O3IIiO2 synthesized from ilmenite ore: A visible light active photocatalyst. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2010 , 367, 140-147	5.1	44	
35	TiO2 nanotube (T_NT) surface treatment revisited: Implications of ZnO, TiCl4, and H2O2 treatment on the photoelectrochemical properties of T_NT and T_NT-CdSe. <i>Nanoscale</i> , 2013 , 5, 269-74	7.7	40	
34	Photoassisted enhancement of the electrocatalytic oxidation of formic acid on platinized TiOI nanotubes. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 100 nanotubes. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 100 nanotubes.	9.5	37	
33	CO2 Photoreduction in the Liquid Phase over Pd-Supported on TiO2 Nanotube and Bismuth Titanate Photocatalysts. <i>Electrochemical and Solid-State Letters</i> , 2011 , 14, F5		35	
32	Hydrothermal Synthesis of Bi12TiO20 Nanostrucutures Using Anodized TiO2 Nanotubes and Its Application in Photovoltaics. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 1631-1636	6.4	31	
31	Mn-modified Bi2Ti2O7 photocatalysts: bandgap engineered multifunctional photocatalysts for hydrogen generation. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 12719-27	3.6	29	
30	Boosting of the Performance of Perovskite Solar Cells through Systematic Introduction of Reduced Graphene Oxide in TiO2Layers. <i>Chemistry Letters</i> , 2015 , 44, 1410-1412	1.7	29	
29	Heterogeneous photocatalytic degradation of recalcitrant pollutants over CdSIIiO2 nanotubes: Boosting effect of TiO2 nanoparticles at nanotubeIIdS interface. <i>Applied Catalysis A: General</i> , 2012 , 441-442, 1-9	5.1	29	
28	TiO2 nanotubes and its composites: Photocatalytic and other photo-driven applications. <i>Journal of Materials Research</i> , 2013 , 28, 280-293	2.5	27	
27	Photodegradation of methyl orange and 2,3-butanedione on titanium-dioxide nanotube arrays efficiently synthesized on titanium coils. <i>Applied Catalysis B: Environmental</i> , 2011 , 110, 6-13	21.8	27	
26	One-Pot Fabrication of High Coverage PbS Quantum Dot Nanocrystal-Sensitized Titania Nanotubes for Photoelectrochemical Processes. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 13659-13668	3.8	22	
25	Photocatalytic NOx removal using tantalum oxide nanoparticles: A benign pathway. <i>Applied Catalysis B: Environmental</i> , 2021 , 291, 119974	21.8	20	
24	Photocatalytic activity of Fe-modified bismuth titanate pyrochlores: Insights into its stability, photoelectrochemical, and optical responses. <i>Applied Catalysis B: Environmental</i> , 2016 , 180, 442-450	21.8	19	

23	Photoelectrochemical Infiltration of a Conducting Polymer (PEDOT) into Metal-Chalcogenide Decorated TiO2 Nanotube Arrays. <i>Electrochimica Acta</i> , 2015 , 151, 467-476	6.7	18
22	Sol G el Synthesis of Thick Ta2O5 Films. <i>Chemistry of Materials</i> , 2007 , 19, 3155-3161	9.6	18
21	Boosting Photocatalytic Activity Using Reduced Graphene Oxide (RGO)/Semiconductor Nanocomposites: Issues and Future Scope. <i>ACS Omega</i> , 2021 , 6, 8734-8743	3.9	18
20	Effects of Carbon Allotrope Interface on the Photoactivity of Rutile One-Dimensional (1D) TiO2 Coated with Anatase TiO2 and Sensitized with CdS Nanocrystals. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 13400-9	9.5	18
19	Synthesis of High-Temperature Titania Alumina Supports I <i>Industrial & amp; Engineering Chemistry Research</i> , 2006 , 45, 3815-3820	3.9	17
18	Role of reduced graphene oxide in the critical components of a CdS-sensitized TiO2 -based photoelectrochemical cell. <i>ChemPhysChem</i> , 2014 , 15, 2010-8	3.2	14
17	Hydrogen Generation Using a Borohydride-Based Semi-continuous Milli-scale Reactor: Effects of Physicochemical Parameters on Hydrogen Yield. <i>Energy & Description</i> 23, 408-413	4.1	14
16	Development of a highly efficient 1D/0D TiO2 nanotube/n-CdTe photoanode: single-step attachment, coverage, and size control by a solvothermal approach. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 4890	13	12
15	A Simple Photocell To Demonstrate Solar Energy Using Benign Household Ingredients. <i>Journal of Chemical Education</i> , 2013 , 90, 1358-1361	2.4	12
14	A unique architecture based on 1 D semiconductor, reduced graphene oxide, and chalcogenide with multifunctional properties. <i>Chemistry - A European Journal</i> , 2014 , 20, 10456-65	4.8	11
13	Electrophoretic assembly of naturally occurring humic substances as thin films. <i>Environmental Science & Environmental Science</i>	10.3	11
12	Insights into the photoactivity of iron modified bismuth titanate (Fe_BTO) nanoparticles. <i>Catalysis Today</i> , 2018 , 300, 81-88	5.3	9
11	A one-pot strategy for coupling chalcogenide nanocrystals with 1D oxides for solar-driven processes. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 24297-24302	13	7
10	TiO2Al2O3 as a support for propane partial oxidation over Rh. <i>Catalysis Letters</i> , 2007 , 113, 13-18	2.8	7
9	How Beneficial Is Reduced Graphene Oxide (RGO) for Long-Term Photo Generated Charge Transport in Bismuth Titanate IRGO Nanocomposite Films?. <i>Journal of the Electrochemical Society</i> , 2016 , 163, H147-H153	3.9	5
8	Photoelectrochemical responses of anodized titanium oxide films. <i>Journal of Materials Research</i> , 2010 , 25, 82-88	2.5	5
7	EditorsTChoiceThe Photoelectrochemical and Photocatalytic Properties of Tantalum Oxide and Tantalum Nitride. <i>Journal of the Electrochemical Society</i> , 2019 , 166, H3294-H3299	3.9	4
6	Free energy dependence of pure phase iron doped bismuth titanate from first principles calculations. <i>Journal of Physics Condensed Matter</i> , 2015 , 27, 315502	1.8	4

LIST OF PUBLICATIONS

5	Synthesis and characterization of polyvinylpyrrolidine assisted tantalum pentoxide films. <i>Thin Solid Films</i> , 2008 , 516, 4784-4792	2.2	4
4	A Selective Synthesis of TaON Nanoparticles and Their Comparative Study of Photoelectrochemical Properties. <i>Catalysts</i> , 2020 , 10, 1128	4	3
3	Hydrogen Production and Photodegradation at TiO2/Metal/CdS Sandwich Using UVI isible Light. <i>Springer Series in Materials Science</i> , 2016 , 141-167	0.9	1
2	Rapid synthesis of tantalum oxide dielectric films by microwave microwave-assisted atmospheric chemical vapor deposition. <i>Thin Solid Films</i> , 2008 , 516, 8307-8314	2.2	1
1	Simultaneous Photodegradation and Hydrogen Production with TiO2/Pt/CdS Using UVI/isible Light in the Presence of a Sacrificial Agent and a Pollutant. <i>Nanostructure Science and Technology</i> , 2014 , 153-171	0.9	