Chengyuan Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2165904/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Mycobacterium bovis</i> induces mitophagy to suppress host xenophagy for its intracellular survival. Autophagy, 2022, 18, 1401-1415.	9.1	18
2	Association of Bowman's capsule rupture with prognosis in patients with lupus nephritis. Journal of Nephrology, 2022, 35, 1193-1204.	2.0	3
3	Bombesin receptor-activated protein exacerbates cisplatin-induced AKI by regulating the degradation of SIRT2. Nephrology Dialysis Transplantation, 2022, 37, 2366-2385.	0.7	1
4	Persistent Activation of Autophagy After Cisplatin Nephrotoxicity Promotes Renal Fibrosis and Chronic Kidney Disease. Frontiers in Pharmacology, 2022, 13, .	3.5	13
5	Triptolide promotes autophagy to inhibit mesangial cell proliferation in <scp>lgA</scp> nephropathy via the <scp>CARD9</scp> /p38 <scp>MAPK</scp> pathway. Cell Proliferation, 2022, 55, .	5.3	17
6	Mitochondrial quality control in kidney injury and repair. Nature Reviews Nephrology, 2021, 17, 299-318.	9.6	209
7	The PINK1/PARK2/optineurin pathway of mitophagy is activated for protection in septic acute kidney injury. Redox Biology, 2021, 38, 101767.	9.0	85
8	NCTD Prevents Renal Interstitial Fibrosis via Targeting Sp1/IncRNA Gm26669 Axis. International Journal of Biological Sciences, 2021, 17, 3118-3132.	6.4	6
9	PARK7 Protects Against Chronic Kidney Injury and Renal Fibrosis by Inducing SOD2 to Reduce Oxidative Stress. Frontiers in Immunology, 2021, 12, 690697.	4.8	10
10	NAM protects against cisplatin-induced acute kidney injury by suppressing the PARP1/p53 pathway. Toxicology and Applied Pharmacology, 2021, 418, 115492.	2.8	9
11	Effects of HIF-1α on renal fibrosis in cisplatin-induced chronic kidney disease. Clinical Science, 2021, 135, 1273-1288.	4.3	19
12	Case Report: Novel NIPBL Variants Cause Cornelia de Lange Syndrome in Chinese Patients. Frontiers in Genetics, 2021, 12, 699894.	2.3	2
13	Whole Exome Sequencing Analysis in Fetal Skeletal Dysplasia Detected by Ultrasonography: An Analysis of 38 Cases. Frontiers in Genetics, 2021, 12, 728544.	2.3	15
14	Whole genome sequencing reveals translocation breakpoints disrupting <i>TP63</i> gene underlying split hand/foot malformation in a Chinese family. Molecular Genetics & Genomic Medicine, 2021, 9, e1604.	1.2	4
15	Reciprocal regulation between ER stress and autophagy in renal tubular fibrosis and apoptosis. Cell Death and Disease, 2021, 12, 1016.	6.3	17
16	Based on Network Pharmacology Tools to Investigate the Mechanism of Tripterygium wilfordii Against IgA Nephropathy. Frontiers in Medicine, 2021, 8, 794962.	2.6	7
17	The deacetylase sirtuin 6 protects against kidneyÂfibrosis by epigenetically blocking β-catenin targetÂgene expression. Kidney International, 2020, 97, 106-118.	5.2	53
18	Norcantharidin protects against renal interstitial fibrosis by suppressing TWEAK-mediated Smad3 phosphorylation. Life Sciences, 2020, 260, 118488.	4.3	7

CHENGYUAN TANG

#	Article	IF	CITATIONS
19	Autophagy in kidney homeostasis and disease. Nature Reviews Nephrology, 2020, 16, 489-508.	9.6	240
20	Aristolochic acid induces renal fibrosis by arresting proximal tubular cells in G2/M phase mediated by HIFâ€lα. FASEB Journal, 2020, 34, 12599-12614.	0.5	19
21	Discovery and validation of miR-452 as an effective biomarker for acute kidney injury in sepsis. Theranostics, 2020, 10, 11963-11975.	10.0	64
22	Clinical and molecular characterization of 12 prenatal cases of Criâ€duâ€chat syndrome. Molecular Genetics & Genomic Medicine, 2020, 8, e1312.	1.2	10
23	Protein Phosphatase 2A Inhibiting β-Catenin Phosphorylation Contributes Critically to the Anti-renal Interstitial Fibrotic Effect of Norcantharidin. Inflammation, 2020, 43, 878-891.	3.8	6
24	Mitophagy in Acute Kidney Injury and Kidney Repair. Cells, 2020, 9, 338.	4.1	79
25	Irisin is induced in renal ischemia-reperfusion to protect against tubular cell injury via suppressing p53. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165792.	3.8	15
26	The negative feedback loop of NF-κB/miR-376b/NFKBIZ in septic acute kidney injury. JCI Insight, 2020, 5, .	5.0	46
27	AMPK/mTOR Signaling in Autophagy Regulation During Cisplatin-Induced Acute Kidney Injury. Frontiers in Physiology, 2020, 11, 619730.	2.8	63
28	Metabolomics window into the role of acute kidney injury after coronary artery bypass grafting in diabetic nephropathy progression. PeerJ, 2020, 8, e9111.	2.0	4
29	Activation of BNIP3-mediated mitophagy protects against renal ischemia–reperfusion injury. Cell Death and Disease, 2019, 10, 677.	6.3	125
30	Chronic effects of repeated low-dose cisplatin treatment in mouse kidneys and renal tubular cells. American Journal of Physiology - Renal Physiology, 2019, 317, F1582-F1592.	2.7	45
31	RNA‣eq analysis of potential IncRNAs and genes for the antiâ€renal fibrotic effect of norcantharidin. Journal of Cellular Biochemistry, 2019, 120, 17354-17367.	2.6	14
32	Nicotinamide reduces renal interstitial fibrosis by suppressing tubular injury and inflammation. Journal of Cellular and Molecular Medicine, 2019, 23, 3995-4004.	3.6	66
33	Hypoxia and Hypoxia-Inducible Factors in Kidney Injury and Repair. Cells, 2019, 8, 207.	4.1	172
34	Non-coding RNAs in kidney injury and repair. American Journal of Physiology - Cell Physiology, 2019, 317, C177-C188.	4.6	75
35	Epigenetic Regulation in Kidney Toxicity: Insights From Cisplatin Nephrotoxicity. Seminars in Nephrology, 2019, 39, 152-158.	1.6	24
36	Disulfide-bond A oxidoreductase-like protein protects against ectopic fat deposition and lipid-related kidney damage in diabetic nephropathy. Kidney International, 2019, 95, 880-895.	5.2	54

CHENGYUAN TANG

#	Article	IF	CITATIONS
37	P53 in kidney injury and repair: Mechanism and therapeutic potentials. , 2019, 195, 5-12.		74
38	Histone deacetylase inhibitors protect against cisplatin-induced acute kidney injury by activating autophagy in proximal tubular cells. Cell Death and Disease, 2018, 9, 322.	6.3	67
39	Reactive oxygen species promote tubular injury in diabetic nephropathy: The role of the mitochondrial ros-txnip-nlrp3 biological axis. Redox Biology, 2018, 16, 32-46.	9.0	269
40	Serum sclerostin in vascular calcification and clinical outcome in chronic kidney disease. Diabetes and Vascular Disease Research, 2018, 15, 99-105.	2.0	33
41	PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury. Autophagy, 2018, 14, 880-897.	9.1	209
42	PINK1/Parkin-mediated mitophagy is activated in cisplatin nephrotoxicity to protect against kidney injury. Cell Death and Disease, 2018, 9, 1113.	6.3	121
43	Endoplasmic reticulum stress is activated in post-ischemic kidneys to promote chronic kidney disease. EBioMedicine, 2018, 37, 269-280.	6.1	98
44	FGF21 is induced in cisplatin nephrotoxicity to protect against kidney tubular cell injury. FASEB Journal, 2018, 32, 3423-3433.	0.5	29
45	Rodent models of AKI-CKD transition. American Journal of Physiology - Renal Physiology, 2018, 315, F1098-F1106.	2.7	139
46	Endoplasmic reticulum stress in ischemic and nephrotoxic acute kidney injury. Annals of Medicine, 2018, 50, 381-390.	3.8	109
47	Rapamycin Enhances Repressed Autophagy and Attenuates Aggressive Progression in a Rat Model of IgA Nephropathy. American Journal of Nephrology, 2017, 45, 293-300.	3.1	23
48	The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1. Redox Biology, 2017, 11, 297-311.	9.0	383
49	Hypoxia, HIF, and Associated Signaling Networks in Chronic Kidney Disease. International Journal of Molecular Sciences, 2017, 18, 0950.	4.1	79
50	Therapeutic potential of FGF21 in cardiorenal syndrome. International Journal of Cardiology, 2016, 214, 70-71.	1.7	1
51	BNIP3 Protein Suppresses PINK1 Kinase Proteolytic Cleavage to Promote Mitophagy. Journal of Biological Chemistry, 2016, 291, 21616-21629.	3.4	194
52	Mitochondrial dysfunction in obesity-related kidney disease: a novel therapeutic target. Kidney International, 2016, 90, 930-933.	5.2	32
53	DNA damage response in nephrotoxic and ischemic kidney injury. Toxicology and Applied Pharmacology, 2016, 313, 104-108.	2.8	60
54	Validation of the interstitial fibrosis and tubular atrophy on the new pathological classification in patients with diabetic nephropathy: A single-center study in China. Journal of Diabetes and Its Complications, 2016, 30, 537-541.	2.3	14

CHENGYUAN TANG

#	Article	IF	CITATIONS
55	Mitochondria in Kidney Injury: When the Power Plant Fails. Journal of the American Society of Nephrology: JASN, 2016, 27, 1869-1872.	6.1	38
56	Synthetic Double-Stranded RNA Poly(I:C) Aggravates IgA Nephropathy by Triggering IgA Class Switching Recombination through the TLR3-BAFF Axis. American Journal of Nephrology, 2015, 42, 185-197.	3.1	16
57	De Novo ring chromosome 11 and non-reciprocal translocation of 11p15.3-pter to 21qter in a patient with congenital heart disease. Molecular Cytogenetics, 2015, 8, 88.	0.9	4
58	DNA damage response in cisplatin-induced nephrotoxicity. Archives of Toxicology, 2015, 89, 2197-2205.	4.2	142
59	Protective effects of curcumin on acute gentamicin-induced nephrotoxicity in rats. Canadian Journal of Physiology and Pharmacology, 2015, 93, 275-282.	1.4	66
60	Mitophagy: Basic Mechanism and Potential Role in Kidney Diseases. Kidney Diseases (Basel,) Tj ETQq0 0 0 rgBT /0	Dverlock 1	0 Tf 50 542 1 42
61	AKT regulation of mesothelial-to-mesenchymal transition in peritoneal dialysis is modulated by smurf2 and deubiquitinating enzyme USP4. BMC Cell Biology, 2015, 16, 7.	3.0	28
62	Mitochondrial Function and Disturbances in the Septic Kidney. Seminars in Nephrology, 2015, 35, 108-119.	1.6	145
63	Pathogenic Cx31 is un/misfolded to cause skin abnormality via a Fos/JunB-mediated mechanism. Human Molecular Genetics, 2015, 24, 6054-6065.	2.9	5
64	Anti-inflammatory effects of triptolide on IgA nephropathy in rats. Immunopharmacology and	24	35

64	Immunotoxicology, 2015, 37, 421-427.	2.4	35
65	Epigenetic regulation in acute kidney injury: new light in a dark area. Kidney International, 2015, 88, 665-668.	5.2	9
66	PKC <i>Î′</i> Promotes High Glucose Induced Renal Tubular Oxidative Damage via Regulating Activation and Translocation of p66Shc. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-11.	4.0	21
67	Mangiferin Attenuate Sepsis-Induced Acute Kidney Injury via Antioxidant and Anti-Inflammatory Effects. American Journal of Nephrology, 2014, 40, 441-450.	3.1	86
68	Activation of mTOR Ameliorates Fragile X Premutation rCGG Repeat-Mediated Neurodegeneration. PLoS ONE, 2013, 8, e62572.	2.5	19
69	Pathogenic Connexin-31 Forms Constitutively Active Hemichannels to Promote Necrotic Cell Death. PLoS ONE, 2012, 7, e32531.	2.5	37
70	Critical Role of PINK1 in Regulating Parkin Protein Levels In Vivo. Archives of Neurology, 2011, 68, 684-5.	4.5	4
71	Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. Journal of Clinical Investigation, 2009, 119, 650-660.	8.2	327