
Jagmeet P Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2165736/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cardiac-Resynchronization Therapy in Heart Failure with a Narrow QRS Complex. New England Journal of Medicine, 2013, 369, 1395-1405.	13.9	688
2	Left Ventricular Lead Position and Clinical Outcome in the Multicenter Automatic Defibrillator Implantation Trial–Cardiac Resynchronization Therapy (MADIT-CRT) Trial. Circulation, 2011, 123, 1159-1166.	1.6	510
3	Primary Results From the SmartDelay Determined AV Optimization: A Comparison to Other AV Delay Methods Used in Cardiac Resynchronization Therapy (SMART-AV) Trial. Circulation, 2010, 122, 2660-2668.	1.6	366
4	The relationship between ventricular electrical delay and left ventricular remodelling with cardiac resynchronization therapy. European Heart Journal, 2011, 32, 2516-2524.	1.0	305
5	2012 EHRA/HRS expert consensus statement on cardiac resynchronization therapy in heart failure: implant and follow-up recommendations and management. Heart Rhythm, 2012, 9, 1524-1576.	0.3	300
6	A Multisensor Algorithm Predicts HeartÂFailure Events in Patients With Implanted Devices. JACC: Heart Failure, 2017, 5, 216-225.	1.9	248
7	Left ventricular lead electrical delay predicts response to cardiac resynchronization therapy. Heart Rhythm, 2006, 3, 1285-1292.	0.3	247
8	2015 HRS/EHRA/APHRS/SOLAECE expert consensus statement on optimal implantable cardioverter-defibrillator programming and testing. Heart Rhythm, 2016, 13, e50-e86.	0.3	197
9	Cardiac Resynchronization in Patients With Atrial Fibrillation. Journal of the American College of Cardiology, 2008, 52, 1239-1246.	1.2	179
10	Wearable Devices for AmbulatoryÂCardiac Monitoring. Journal of the American College of Cardiology, 2020, 75, 1582-1592.	1.2	178
11	The Coronary Venous Anatomy. Journal of the American College of Cardiology, 2005, 46, 68-74.	1.2	159
12	Factors Influencing Appropriate Firing of the Implanted Defibrillator for Ventricular Tachycardia/Fibrillation. Journal of the American College of Cardiology, 2005, 46, 1712-1720.	1.2	157
13	Circulating MicroRNA-30d Is Associated With Response to Cardiac Resynchronization Therapy in Heart Failure and Regulates Cardiomyocyte Apoptosis. Circulation, 2015, 131, 2202-2216.	1.6	137
14	2015 HRS/EHRA/APHRS/SOLAECE expert consensus statement on optimal implantable cardioverter-defibrillator programming and testing. Europace, 2016, 18, 159-183.	0.7	135
15	Multidisciplinary care of patients receiving cardiac resynchronization therapy is associated with improved clinical outcomes. European Heart Journal, 2012, 33, 2181-2188.	1.0	86
16	Contractility sensor-guided optimization of cardiac resynchronization therapy: results from the RESPOND-CRT trial. European Heart Journal, 2017, 38, ehw526.	1.0	83
17	QRS Duration or QRS Morphology. Journal of the American College of Cardiology, 2016, 67, 1104-1117.	1.2	77
18	Stateâ€ofâ€theâ€Art Machine Learning Techniques Aiming to Improve Patient Outcomes Pertaining to the Cardiovascular System, Iournal of the American Heart Association, 2020, 9, e013924.	1.6	76

#	Article	IF	CITATIONS
19	A review of multisite pacing to achieve cardiac resynchronization therapy. Europace, 2015, 17, 7-17.	0.7	75
20	HeartLogic Multisensor Algorithm Identifies Patients During Periods of Significantly Increased Risk of Heart Failure Events. Circulation: Heart Failure, 2018, 11, e004669.	1.6	73
21	Radiographic Left Ventricular–Right Ventricular Interlead Distance Predicts the Acute Hemodynamic Response to Cardiac Resynchronization Therapy. American Journal of Cardiology, 2005, 96, 685-690.	0.7	71
22	QRS morphology, left ventricular lead location, and clinical outcome in patients receiving cardiac resynchronization therapy. European Heart Journal, 2013, 34, 2252-2262.	1.0	69
23	Rationale and Design of the Left Atrial Pressure Monitoring to Optimize Heart Failure Therapy Study (LAPTOP-HF). Journal of Cardiac Failure, 2015, 21, 479-488.	0.7	69
24	Variability of coronary venous anatomy in patients undergoing cardiac resynchronization therapy: A high-speed rotational venography study. Heart Rhythm, 2007, 4, 1155-1162.	0.3	68
25	Indications for CardiacÂResynchronizationÂTherapy. JACC: Heart Failure, 2018, 6, 308-316.	1.9	68
26	The effect of QRS duration on cardiac resynchronization therapy in patients with a narrow QRS complex: a subgroup analysis of the EchoCRT trial. European Heart Journal, 2015, 36, 1983-1989.	1.0	65
27	Evaluation, Management, and Outcomes of Patients Poorly Responsive to CardiacÂResynchronization Device Therapy. Journal of the American College of Cardiology, 2019, 74, 2588-2603.	1.2	60
28	Non-pharmacological modulation of the autonomic tone to treat heart failure. European Heart Journal, 2014, 35, 77-85.	1.0	58
29	Machine learning versus conventional clinical methods in guiding management of heart failure patients—a systematic review. Heart Failure Reviews, 2021, 26, 23-34.	1.7	57
30	Reduced appropriate implantable cardioverter-defibrillator therapy after cardiac resynchronization therapy-induced left ventricular function recovery: a meta-analysis and systematic review. European Heart Journal, 2015, 36, 2780-2789.	1.0	55
31	Clinical response with adaptive CRT algorithm compared with CRT with echocardiography-optimized atrioventricular delay: a retrospective analysis of multicentre trials. Europace, 2013, 15, 1622-1628.	0.7	52
32	National Trends in the Use of Cardiac Resynchronization Therapy With or Without Implantable Cardioverter-Defibrillator. Circulation, 2016, 133, 273-281.	1.6	47
33	Implantable Sensors for Heart Failure. Circulation: Arrhythmia and Electrophysiology, 2010, 3, 657-667.	2.1	46
34	Coronary sinus biomarker sampling compared to peripheral venous blood for predicting outcomes in patients with severe heart failure undergoing cardiac resynchronization therapy: The BIOCRT study. Heart Rhythm, 2014, 11, 2167-2175.	0.3	46
35	Novel Interventional Therapies to Modulate the Autonomic Tone in HeartÂFailure. JACC: Heart Failure, 2015, 3, 786-802.	1.9	46
36	Autonomic Modulation of Cardiac Arrhythmias. JACC: Clinical Electrophysiology, 2020, 6, 467-483.	1.3	45

#	Article	IF	CITATIONS
37	Association of persistent or worsened echocardiographic dyssynchrony with unfavourable clinical outcomes in heart failure patients with narrow QRS width: a subgroup analysis of the EchoCRT trial. European Heart Journal, 2016, 37, 49-59.	1.0	43
38	Left ventricular lead location and the risk of ventricular arrhythmias in the MADIT-CRT trial. European Heart Journal, 2013, 34, 184-190.	1.0	42
39	Coronary Sinus Neuropeptide Y Levels and Adverse Outcomes in Patients With Stable Chronic Heart Failure. JAMA Cardiology, 2020, 5, 318.	3.0	42
40	Novel measure of electrical dyssynchrony predicts response in cardiac resynchronization therapy: Results from the SMART-AV Trial. Heart Rhythm, 2015, 12, 2402-2410.	0.3	39
41	The effect of left ventricular electrical delay on AV optimization for cardiac resynchronization therapy. Heart Rhythm, 2013, 10, 988-993.	0.3	38
42	Interventricular Electrical Delay IsÂPredictive of Response to CardiacÂResynchronizationÂTherapy. JACC: Clinical Electrophysiology, 2016, 2, 438-447.	1.3	37
43	Increasing sex differences in the use of cardiac resynchronization therapy with or without implantable cardioverter-defibrillator. European Heart Journal, 2017, 38, ehw598.	1.0	35
44	Leadless left ventricular stimulation with WiSE-CRT System – Initial experience and results from phase I of SOLVE-CRT Study (nonrandomized, roll-in phase). Heart Rhythm, 2022, 19, 22-29.	0.3	35
45	Device-Measured Physical Activity Versus Six-Minute Walk Test as a Predictor of Reverse Remodeling and Outcome After Cardiac Resynchronization Therapy for Heart Failure. American Journal of Cardiology, 2014, 113, 1523-1528.	0.7	34
46	2015 HRS/EHRA/APHRS/SOLAECE expert consensus statement on optimal implantable cardioverterâ€defibrillator programming and testing. Journal of Arrhythmia, 2016, 32, 1-28.	0.5	34
47	Soluble CD146 Is a Novel Marker of Systemic Congestion in Heart Failure Patients: An Experimental Mechanistic and Transcardiac Clinical Study. Clinical Chemistry, 2017, 63, 386-393.	1.5	34
48	Wearables, telemedicine, and artificial intelligence in arrhythmias and heart failure: Proceedings of the European Society of Cardiology Cardiovascular Round Table. Europace, 2022, 24, 1372-1383.	0.7	34
49	Association of Cardiac Resynchronization Therapy With Change in Left Ventricular Ejection Fraction in Patients With Chemotherapy-Induced Cardiomyopathy. JAMA - Journal of the American Medical Association, 2019, 322, 1799.	3.8	32
50	Multicenter Automatic Defibrillator Implantation Trial–Subcutaneous Implantable Cardioverter Defibrillator (MADIT S-ICD): Design and clinical protocol. American Heart Journal, 2017, 189, 158-166.	1.2	31
51	Preventing Postoperative Atrial Fibrillation After Noncardiac Surgery: A Meta-analysis. American Journal of Medicine, 2018, 131, 795-804.e5.	0.6	31
52	Device diagnostics and long-term clinical outcome in patients receiving cardiac resynchronization therapy. Europace, 2009, 11, 1647-1653.	0.7	30
53	Simultaneous Electrical and Mechanical Mapping Using 3D Cardiac Mapping System: Novel Approach for Optimal Cardiac Resynchronization Therapy. Journal of Cardiovascular Electrophysiology, 2010, 21, 219-222.	0.8	30
54	Targeted Left Ventricular Lead Implantation Strategy for Non-Left Bundle Branch Block Patients. JACC: Clinical Electrophysiology, 2020, 6, 1171-1181.	1.3	29

#	Article	IF	CITATIONS
55	Realâ€world behavior of CRT pacing using the AdaptivCRT algorithm on patient outcomes: Effect on mortality and atrial fibrillation incidence. Journal of Cardiovascular Electrophysiology, 2020, 31, 825-833.	0.8	29
56	Smartwatch Electrocardiogram and Artificial Intelligence for Assessing Cardiac-Rhythm Safety of Drug Therapy in the COVID-19 Pandemic. The QT-logs study. International Journal of Cardiology, 2021, 331, 333-339.	0.8	29
57	Prognostic implication of baseline PR interval in cardiac resynchronization therapy recipients. Heart Rhythm, 2015, 12, 2256-2262.	0.3	28
58	The heart regulates the endocrine response to heart failure: cardiac contribution to circulating neprilysin. European Heart Journal, 2018, 39, 1794-1798.	1.0	27
59	Biventricular pacing: current trends and future strategies. European Heart Journal, 2012, 33, 305-313.	1.0	26
60	Automatic Optimization of Cardiac Resynchronization Therapy Using SonR—Rationale and Design of the Clinical Trial of the SonRtip Lead and Automatic AV-VV Optimization Algorithm in the Paradym RF SonR CRT-D (RESPOND CRT) Trial. American Heart Journal, 2014, 167, 429-436.	1.2	26
61	Assessing mitral regurgitation in the prediction of clinical outcome after cardiac resynchronization therapy. Heart Rhythm, 2015, 12, 1201-1208.	0.3	26
62	Comparative Effectiveness of CRT-D Versus Defibrillator Alone in HF Patients With Moderate-to-Severe Chronic Kidney Disease. Journal of the American College of Cardiology, 2015, 66, 2618-2629.	1.2	26
63	Cardiac Resynchronization Therapy. Heart Failure Clinics, 2015, 11, 287-303.	1.0	26
64	Cardiac Implantable Electronic Devices inÂPatients With Left Ventricular AssistÂSystems. Journal of the American College of Cardiology, 2018, 71, 1483-1493.	1.2	26
65	A Novel Point-of-Care Smartphone Based System for Monitoring the Cardiac and Respiratory Systems. Scientific Reports, 2017, 7, 44946.	1.6	23
66	Design and rationale for the Stimulation Of the Left Ventricular Endocardium for Cardiac Resynchronization Therapy in non-responders and previously untreatable patients (SOLVE-CRT) trial. American Heart Journal, 2019, 217, 13-22.	1.2	23
67	Clinical, Laboratory, and Pacing Predictors of CRT Response. Journal of Cardiovascular Translational Research, 2012, 5, 196-212.	1.1	22
68	Prognostic implications of left ventricular global longitudinal strain in heart failure patients with narrow QRS complex treated with cardiac resynchronization therapy: a subanalysis of the randomized EchoCRT trial. European Heart Journal, 2017, 38, ehw506.	1.0	22
69	Usefulness of High-Speed Rotational Coronary Venous Angiography During Cardiac Resynchronization Therapy. American Journal of Cardiology, 2007, 100, 1561-1565.	0.7	21
70	Utility of dual-source computed tomography in cardiac resynchronization therapy—DIRECT study. Heart Rhythm, 2018, 15, 1206-1213.	0.3	21
71	Incidence and Clinical Significance of New-Onset Device-Detected Atrial Tachyarrhythmia. Circulation: Arrhythmia and Electrophysiology, 2018, 11, e005393.	2.1	21
72	Pre-Capillary Pulmonary Hypertension and Right Ventricular Dilation Predict Clinical Outcome in Cardiac Resynchronization Therapy. JACC: Heart Failure, 2014, 2, 230-237.	1.9	20

#	Article	IF	CITATIONS
73	Left Ventricular Lead Location and Long-Term Outcomes in Cardiac Resynchronization Therapy Patients. JACC: Clinical Electrophysiology, 2018, 4, 1410-1420.	1.3	20
74	Interaction of Left Ventricular Size and Sex on Outcome of Cardiac Resynchronization Therapy Among Patients With a Narrow QRS Duration in the EchoCRT Trial. Journal of the American Heart Association, 2018, 7, .	1.6	20
75	"Dialing-in―cardiac resynchronization therapy: Overcoming constraints of the coronary venous anatomy. Journal of Interventional Cardiac Electrophysiology, 2007, 17, 51-58.	0.6	19
76	Low‣evel Tragus Stimulation Modulates Atrial Alternans and Fibrillation Burden in Patients With Paroxysmal Atrial Fibrillation. Journal of the American Heart Association, 2021, 10, e020865.	1.6	19
77	Prognostic Impact of QRS Axis Deviation in Patients Treated With Cardiac Resynchronization Therapy. Journal of Cardiovascular Electrophysiology, 2016, 27, 315-320.	0.8	18
78	Effect of Interventricular Electrical Delay on Atrioventricular Optimization for Cardiac Resynchronization Therapy. Circulation: Arrhythmia and Electrophysiology, 2018, 11, e006055.	2.1	18
79	Usefulness of a Novel "Response Score―to Predict Hemodynamic and Clinical Outcome from Cardiac Resynchronization Therapy. American Journal of Cardiology, 2006, 97, 1732-1736.	0.7	17
80	Longer Left Ventricular Electric Delay Reduces Mitral Regurgitation After Cardiac Resynchronization Therapy. Circulation: Arrhythmia and Electrophysiology, 2016, 9, .	2.1	17
81	Usefulness of the Sum Absolute QRST Integral to Predict Outcomes in Patients Receiving Cardiac Resynchronization Therapy. American Journal of Cardiology, 2016, 118, 389-395.	0.7	17
82	Fusion of three-dimensional X-ray angiography and three-dimensional echocardiography. International Journal of Computer Assisted Radiology and Surgery, 2008, 2, 293-303.	1.7	16
83	A Novel Method to Capture the Onset of Dynamic Electrocardiographic Ischemic Changes and its Implications to Arrhythmia Susceptibility. Journal of the American Heart Association, 2014, 3, e001055.	1.6	16
84	New Classification Scheme for Atrial Fibrillation Symptom Severity and Burden. American Journal of Cardiology, 2014, 114, 260-265.	0.7	16
85	Myocardial scar imaging by standard single-energy and dual-energy late enhancement CT: Comparison with pathology and electroanatomic map in an experimental chronic infarct porcine model. Journal of Cardiovascular Computed Tomography, 2015, 9, 313-320.	0.7	16
86	Utility of a Smartphone Based System (cvrPhone) to Predict Short-term Arrhythmia Susceptibility. Scientific Reports, 2019, 9, 14497.	1.6	16
87	Realâ€World Assessment of Acute Left Ventricular Lead Implant Success and Complication Rates: Results from the Attain Success Clinical Trial. PACE - Pacing and Clinical Electrophysiology, 2016, 39, 1246-1253.	0.5	15
88	Long-term reverse remodeling by cardiac resynchronization therapy with MultiPoint Pacing: A feasibility study of noninvasive hemodynamics–guided device programming. Heart Rhythm, 2018, 15, 1766-1774.	0.3	15
89	Electrocardiographic optimization techniques in resynchronization therapy. Europace, 2019, 21, 1286-1296.	0.7	15
90	Risk of ventricular arrhythmia in cardiac resynchronization therapy responders and super-responders: a systematic review and meta-analysis. Europace, 2021, 23, 1262-1274.	0.7	15

#	Article	IF	CITATIONS
91	Cardiac Resynchronization Therapy in Patients With Heart Failure and Narrow QRS Complexes. Journal of the American College of Cardiology, 2018, 71, 1325-1333.	1.2	14
92	Arrhythmias in Cardiac Sarcoidosis Bench to Bedside. Circulation: Arrhythmia and Electrophysiology, 2021, 14, e009203.	2.1	14
93	Sleep (Vagal)–Induced Atrial Fibrillation. Circulation, 2004, 110, e32-3.	1.6	13
94	Progressive ventricular dysfunction among nonresponders to cardiac resynchronization therapy: Baseline predictors and associated clinical outcomes. Heart Rhythm, 2014, 11, 1991-1998.	0.3	13
95	Renal Response in Patients with Chronic Kidney Disease Predicts Outcome Following Cardiac Resynchronization Therapy. PACE - Pacing and Clinical Electrophysiology, 2015, 38, 1192-1200.	0.5	13
96	Novel Heart Failure Biomarkers Predict Improvement of Mitral Regurgitation in Patients Receiving Cardiac Resynchronization Therapy—The BIOCRT Study. Canadian Journal of Cardiology, 2016, 32, 1478-1484.	0.8	13
97	Potential Uses of Computed Tomography for Management of Heart Failure Patients With Dyssynchrony. Critical Pathways in Cardiology, 2008, 7, 185-190.	0.2	12
98	Association of Hypothyroidism With Adverse Events in Patients With Heart Failure Receiving Cardiac Resynchronization Therapy. American Journal of Cardiology, 2015, 115, 1249-1253.	0.7	12
99	Association of an Acute Myocardial Infarction Readmission-Reduction Program With Mortality and Readmission. Circulation: Cardiovascular Quality and Outcomes, 2020, 13, e006043.	0.9	12
100	Anemia and its association with clinical outcome in heart failure patients undergoing cardiac resynchronization therapy. Journal of Interventional Cardiac Electrophysiology, 2015, 44, 297-304.	0.6	11
101	Inflammatory Mediators and Clinical Outcome in Patients With Advanced Heart Failure Receiving Cardiac Resynchronization Therapy. American Journal of Cardiology, 2016, 117, 617-625.	0.7	11
102	T-wave area as biomarker of clinical response to cardiac resynchronization therapy. Europace, 2016, 18, 1077-1085.	0.7	11
103	Utility of a smartphone based system (cvrphone) to accurately determine apneic events from electrocardiographic signals. PLoS ONE, 2019, 14, e0217217.	1.1	11
104	Mid-regional pro-atrial natriuretic peptide to predict clinical course in heart failure patients undergoing cardiac resynchronization therapy. Europace, 2017, 19, 1848-1854.	0.7	10
105	Real-Time Closed-Loop Suppression of Repolarization Alternans Reduces Arrhythmia Susceptibility In Vivo. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e008186.	2.1	10
106	The cost of non-response to cardiac resynchronization therapy: characterizing heart failure events following cardiac resynchronization therapy. Europace, 2021, 23, 1586-1595.	0.7	10
107	Elusive atrial substrate: Complex fractionated atrial electrograms and beyond. Heart Rhythm, 2010, 7, 1886-1890.	0.3	9
108	Renin-angiotensin-system modulators and the incidence of atrial fibrillation following hospitalization for coronary artery disease. Europace, 2012, 14, 1287-1293.	0.7	9

#	Article	IF	CITATIONS
109	Leadless pacemakers: leading us into the future?: Figure 1. European Heart Journal, 2015, 36, 2520-2522.	1.0	9
110	Incremental value of cystatin C over conventional renal metrics for predicting clinical response and outcomes in cardiac resynchronization therapy: The BIOCRT study. International Journal of Cardiology, 2016, 205, 43-49.	0.8	9
111	Impact of cardiac resynchronization therapy on mitral valve apparatus geometry and clinical outcomes in patients with secondary mitral regurgitation. Echocardiography, 2017, 34, 1561-1567.	0.3	9
112	Cardiorenal status using amino-terminal pro–brain natriuretic peptide and cystatin C on cardiac resynchronization therapy outcomes: From the BIOCRT Study. Heart Rhythm, 2019, 16, 928-935.	0.3	9
113	Social determinants of telemedicine utilization in ambulatory cardiovascular patients during the COVID-19 pandemic. European Heart Journal Digital Health, 2021, 2, 244-253.	0.7	9
114	Modified design of stimulation of the left ventricular endocardium for cardiac resynchronization therapy in nonresponders, previously untreatable and high-risk upgrade patients (SOLVE-CRT) trial. American Heart Journal, 2021, 235, 158-162.	1.2	9
115	Virtual multidisciplinary care for heart failure patients with cardiac resynchronization therapy devices during the Coronavirus Disease 2019 pandemic. IJC Heart and Vasculature, 2021, 34, 100811.	0.6	9
116	Biventricular pacing: more is better!. European Heart Journal, 2015, 36, 407-409.	1.0	8
117	A new simplified electrocardiographic score predicts clinical outcome in patients treated with CRT. Europace, 2018, 20, 492-500.	0.7	8
118	Rationale and design for ENHANCE CRT: QLV implant strategy for nonâ€left bundle branch block patients. ESC Heart Failure, 2018, 5, 1184-1190.	1.4	8
119	Usefulness of Hyponatremia as a Predictor for Adverse Events in Patients With Heart Failure Receiving Cardiac Resynchronization Therapy. American Journal of Cardiology, 2014, 114, 83-87.	0.7	7
120	Coronary Sinus Lead Positioning. Heart Failure Clinics, 2017, 13, 79-91.	1.0	7
121	Relationship of soluble ST2 to pulmonary hypertension severity in patients undergoing cardiac resynchronization therapy. Journal of Thoracic Disease, 2019, 11, 5362-5371.	0.6	7
122	Combination Biomarkers for Risk Stratification in Patients with Chronic Heart Failure Biomarkers Prognostication in HF. Journal of Cardiac Failure, 2021, 27, 1321-1327.	0.7	7
123	Short-term prediction of atrial fibrillation from ambulatory monitoring ECG using a deep neural network. European Heart Journal Digital Health, 2022, 3, 208-217.	0.7	7
124	The Role of I-123 Metaiodobenzylguanidine Imaging in Management of Patients With Heart Failure. American Journal of Cardiology, 2015, 116, S1-S9.	0.7	6
125	Alternative left ventricular pacing approaches for optimal cardiac resynchronization therapy. Heart Rhythm, 2019, 16, 1281-1289.	0.3	6
126	Left ventricular wall thickness assessed by cardiac computed tomography and cardiac resynchronization therapy outcomes. Europace, 2020, 22, 401-411.	0.7	6

#	Article	IF	CITATIONS
127	Microvolt T-Wave Alternans Is Modulated by Acute Low-Level Tragus Stimulation in Patients With Ischemic Cardiomyopathy and Heart Failure. Frontiers in Physiology, 2021, 12, 707724.	1.3	6
128	Emerging Implantable-Device Technology for Patients at the Intersection of Electrophysiology and Heart Failure Interdisciplinary Care. Journal of Cardiac Failure, 2022, 28, 991-1015.	0.7	6
129	CRT Efficacy in "Mid-Range―QRS Duration Among Asians Contrasted to Non-Asians, and Influence of Height. JACC: Clinical Electrophysiology, 2022, 8, 211-221.	1.3	6
130	Cause of death and CRT device selection: striving for certitude?. European Heart Journal, 2015, 36, 2777-2779.	1.0	5
131	Spinal Cord Stimulation for Heart Failure inÂthe DEFEAT-HF Study. JACC: Heart Failure, 2016, 4, 137-139.	1.9	5
132	Making sense of remote monitoring studies in heart failure. European Heart Journal, 2017, 38, 2361-2363.	1.0	5
133	Atrial Fibrillation and Heart Failure Prevention. JACC: Heart Failure, 2017, 5, 53-55.	1.9	5
134	Effect of cardiac resynchronization therapy in patients with diabetes randomized in <scp>EchoCRT</scp> . European Journal of Heart Failure, 2017, 19, 80-87.	2.9	5
135	Low-Level Tragus Stimulation for Atrial Fibrillation. JACC: Clinical Electrophysiology, 2020, 6, 292-294.	1.3	5
136	Autonomic modulation and cardiac arrhythmias: old insights and novel strategies. Europace, 2021, 23, 1708-1721.	0.7	5
137	Device-Based Approaches to Modulate the Autonomic Nervous System and Cardiac Electrophysiology. Arrhythmia and Electrophysiology Review, 2014, 3, 30-35.	1.3	5
138	Patient selection and classification for atrial fibrillation ablation: Thinking beyond duration. Heart Rhythm, 2009, 6, 1522-1525.	0.3	4
139	Spinal Cord Stimulation for Intercostal Neuralgia in a Patient With Implantable Cardiac Defibrillator and Biventricular Pacing. Neuromodulation, 2014, 17, 386-388.	0.4	4
140	An Electrophysiologist Perspective on Risk Stratification in Heart Failure: Can Better Understanding of the Condition of the Cardiac Sympathetic Nervous System Help?. Journal of Nuclear Medicine, 2015, 56, 59S-64S.	2.8	4
141	Cardiac Resynchronization Therapy and Implantable Cardioverter Defibrillator Therapy in Advanced HeartÂFailure. Heart Failure Clinics, 2016, 12, 423-436.	1.0	4
142	The effects of cardiac resynchronization therapy on left ventricular and mitral valve geometry and secondary mitral regurgitation in patients with left bundle branch block. Echocardiography, 2019, 36, 1450-1458.	0.3	4
143	It Is Time for Us to Get Artificially Intelligent!. JACC: Clinical Electrophysiology, 2019, 5, 263-265.	1.3	4
144	Measuring individual physician clinical productivity in an era of consolidated group practices. Healthcare, 2019, 7, .	0.6	4

#	Article	IF	CITATIONS
145	Evolving Cardiac Electrical Therapies for Advanced Heart Failure Patients. Circulation: Arrhythmia and Electrophysiology, 2021, 14, e009668.	2.1	4
146	Is Image Guidance for Left Ventricular Lead Targeting Overkill?. JACC: Clinical Electrophysiology, 2020, 6, 1310-1312.	1.3	3
147	Advances in electrical therapy for heart failure: Papers from the International ADVANCE CRT Summit. Heart Rhythm, 2012, 9, S1-S2.	0.3	2
148	Effects of cardiac resynchronization therapy after inferior myocardial infarction on secondary mitral regurgitation and mitral valve geometry. PACE - Pacing and Clinical Electrophysiology, 2018, 41, 114-121.	0.5	2
149	Computed Tomographyâ^'Guided Assessment of Response to Cardiac Resynchronization Therapy. JACC: Clinical Electrophysiology, 2019, 5, 987-989.	1.3	2
150	Can cardiac resynchronization therapy be used as a tool to reduce sudden cardiac arrest risk?. Progress in Cardiovascular Diseases, 2019, 62, 242-248.	1.6	2
151	Utility of Computed Tomography to Predict Ventricular Arrhythmias in Patients With Nonischemic Cardiomyopathy Receiving Cardiac Resynchronization Therapy. American Journal of Cardiology, 2020, 125, 607-612.	0.7	2
152	Sensor-aided continuous care and self-management: implications for the post-COVID era. The Lancet Digital Health, 2020, 2, e632-e634.	5.9	2
153	Comparative Effectiveness of Primary Prevention Implantable Cardioverterâ€Defibrillators in Older Heart Failure Patients With Diabetes Mellitus. Journal of the American Heart Association, 2020, 9, e012405.	1.6	2
154	Arrhythmias and device therapies in patients with cancer therapy-induced cardiomyopathy. Heart Rhythm, 2021, 18, 1223-1229.	0.3	2
155	Relationship Between Electrical and Mechanical Dyssynchrony and Outcomes Among Patients Undergoing Cardiac Resynchronization Therapy. Circulation: Arrhythmia and Electrophysiology, 2021, 14, CIRCEP121010217.	2.1	2
156	Beyond Ejection Fraction: Is There a Role for the Use of Mechanical Dispersion in Predicting Ventricular Arrhythmias?. Journal of the American Society of Echocardiography, 2022, 35, 366-368.	1.2	2
157	Cardiac Resynchronization Therapy: The MGH Experience. Annals of Noninvasive Electrocardiology, 2005, 10, 44-54.	0.5	1
158	QRS configuration and cardiac resynchronization therapy: Do we need a patient-specific approach?. Heart Rhythm, 2009, 6, 1448-1449.	0.3	1
159	ICDs, Guidelines, and National Registries: Opportunities to Enhance Quality of Patient Care. PACE - Pacing and Clinical Electrophysiology, 2012, 35, 253-258.	0.5	1
160	Threeâ€Dimensional Cardiac Mapping Characterizes Ventricular Contractile Patterns during Cardiac Resynchronization Therapy Implant: A Feasibility Study. PACE - Pacing and Clinical Electrophysiology, 2015, 38, 1091-1098.	0.5	1
161	SIMPLEr not to test implantable cardioverter defibrillators?. Lancet, The, 2015, 385, 753-755.	6.3	1
162	Coronary Sinus Lead Positioning. Cardiac Electrophysiology Clinics, 2015, 7, 635-647.	0.7	1

#	Article	IF	CITATIONS
163	Response to Letter Regarding Article, "Circulating MicroRNA-30d Is Associated With Response to Cardiac Resynchronization Therapy in Heart Failure and Regulates Cardiomyocyte Apoptosis: A Translational Pilot Studyâ€: Circulation, 2016, 133, e389-e390.	1.6	1
164	Left ventricle and mitral valve reverse remodeling in response to cardiac resynchronization therapy in nonischemic cardiomyopathy. Echocardiography, 2020, 37, 1557-1565.	0.3	1
165	Integrated electrophysiology care for patients with heart failure: An envisioned future. Heart Rhythm, 2021, 18, e51-e63.	0.3	1
166	Ventricular activation patterns during intrinsic conduction and right ventricular pacing in cardiac resynchronization therapy patients. PACE - Pacing and Clinical Electrophysiology, 2021, 44, 1663-1670.	0.5	1
167	His Bundle Pacing. JACC: Clinical Electrophysiology, 2022, 8, 70-72.	1.3	1
168	Sex-Specific Differences in Ventricular Remodeling and Response After Cardiac Resynchronization Therapy. American Journal of Cardiology, 2022, , .	0.7	1
169	Metaâ€analysis of biventricular vs. right ventricular pacing mode in patients with atrial fibrillation undergoing atrioventricular nodal ablation: what was the quality of the included trials? ―reply. European Journal of Heart Failure, 2012, 14, 1311-1312.	2.9	0
170	EFFORTLESS S-ICD registry: another step in the right direction. European Heart Journal, 2014, 35, 1634-1636.	1.0	0
171	Electrophysiology and Health Care Reform. JACC: Clinical Electrophysiology, 2015, 1, 463-464.	1.3	0
172	Breaking New Paths. JACC: Clinical Electrophysiology, 2015, 1, 337-339.	1.3	0
173	Reply to the Editor—Prognostic Implication of Baseline PR Interval in Patients Undergoing Cardiac Resynchronization Therapy. Heart Rhythm, 2016, 13, 1573-1574.	0.3	0
174	Resynchronizing the Heart and Remodeling Healthcare. JACC: Clinical Electrophysiology, 2016, 2, 532-533.	1.3	0
175	Clinical EP in 2017 and Beyond. JACC: Clinical Electrophysiology, 2017, 3, 85-87.	1.3	Ο
176	The Nonischemic Cardiomyopathy Defibrillator Conundrum. JACC: Clinical Electrophysiology, 2017, 3, 1064-1067.	1.3	0
177	Connecting Life With Devices. JACC: Clinical Electrophysiology, 2018, 4, 422-423.	1.3	0
178	Evolving Strategies in Heart Failure Management: An Eye Toward Cardiac Resynchronization Therapy. Cardiac Electrophysiology Clinics, 2019, 11, xv-xvi.	0.7	0
179	Is There a â€~Right' Way to Define theÂâ€~Left'ÂBundle Branch Block for EnhancingÂResponse?. JACC: Clir Electrophysiology, 2020, 6, 204-206.	nical 1.3	0
180	Cardiac Resynchronization Therapy for Chemotherapy-Induced Cardiomyopathy—Reply. JAMA - Journal of the American Medical Association, 2020, 323, 1317.	3.8	0

#	Article	IF	CITATIONS
181	Advances in Heart Failure Management: Improving Outcomes With Innovation. Reviews in Cardiovascular Medicine, 2017, 18, S1-S16.	0.5	0
182	Techniques for Visualizing the Coronary Sinus and Coronary Venous Anatomy. , 0, , 183-195.		0
183	Keep your fingers on the PULsE: artificial intelligence to guide atrial fibrillation screening. European Heart Journal Digital Health, 0, , .	0.7	0