Robyn L Stanfield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2165638/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystal Structure of a Soluble Cleaved HIV-1 Envelope Trimer. Science, 2013, 342, 1477-1483.	6.0	793
2	A Potent and Broad Neutralizing Antibody Recognizes and Penetrates the HIV Glycan Shield. Science, 2011, 334, 1097-1103.	6.0	644
3	Broadly Neutralizing Anti-HIV Antibody 4E10 Recognizes a Helical Conformation of a Highly Conserved Fusion-Associated Motif in gp41. Immunity, 2005, 22, 163-173.	6.6	410
4	Hepatitis C Virus E2 Envelope Glycoprotein Core Structure. Science, 2013, 342, 1090-1094.	6.0	374
5	HIV Vaccine Design to Target Germline Precursors of Glycan-Dependent Broadly Neutralizing Antibodies. Immunity, 2016, 45, 483-496.	6.6	335
6	Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120. Nature Structural and Molecular Biology, 2013, 20, 796-803.	3.6	314
7	Crystal Structure of a Shark Single-Domain Antibody V Region in Complex with Lysozyme. Science, 2004, 305, 1770-1773.	6.0	282
8	Contrasting IgG Structures Reveal Extreme Asymmetry and Flexibility. Journal of Molecular Biology, 2002, 319, 9-18.	2.0	246
9	Antibody Elbow Angles are Influenced by their Light Chain Class. Journal of Molecular Biology, 2006, 357, 1566-1574.	2.0	229
10	Open and closed structures reveal allostery and pliability in the HIV-1 envelope spike. Nature, 2017, 547, 360-363.	13.7	217
11	Affinity Maturation of a Potent Family of HIV Antibodies Is Primarily Focused on Accommodating or Avoiding Glycans. Immunity, 2015, 43, 1053-1063.	6.6	200
12	Structural Rationale for the Broad Neutralization of HIV-1 by Human Monoclonal Antibody 447-52D. Structure, 2004, 12, 193-204.	1.6	185
13	Receptor mimicry by antibody F045–092 facilitates universal binding to the H3 subtype of influenza virus. Nature Communications, 2014, 5, 3614.	5.8	175
14	Rapid elicitation of broadly neutralizing antibodies to HIV by immunization in cows. Nature, 2017, 548, 108-111.	13.7	154
15	Design and crystal structure of a native-like HIV-1 envelope trimer that engages multiple broadly neutralizing antibody precursors in vivo. Journal of Experimental Medicine, 2017, 214, 2573-2590.	4.2	151
16	Murine Antibody Responses to Cleaved Soluble HIV-1 Envelope Trimers Are Highly Restricted in Specificity. Journal of Virology, 2015, 89, 10383-10398.	1.5	148
17	Maturation of Shark Single-domain (IgNAR) Antibodies: Evidence for Induced-fit Binding. Journal of Molecular Biology, 2007, 367, 358-372.	2.0	127
18	Crystal Structures of Human Immunodeficiency Virus Type 1 (HIV-1) Neutralizing Antibody 2219 in Complex with Three Different V3 Peptides Reveal a New Binding Mode for HIV-1 Cross-Reactivity. Journal of Virology, 2006, 80, 6093-6105.	1.5	113

ROBYN L STANFIELD

#	Article	IF	CITATIONS
19	Structural analysis, selection, and ontogeny of the shark new antigen receptor (IgNAR): identification of a new locus preferentially expressed in early development. Immunogenetics, 2002, 54, 501-512.	1.2	97
20	Glycine Substitution at Helix-to-Coil Transitions Facilitates the Structural Determination of a Stabilized Subtype C HIV Envelope Glycoprotein. Immunity, 2017, 46, 792-803.e3.	6.6	96
21	A Conformational Switch in Human Immunodeficiency Virus gp41 Revealed by the Structures of Overlapping Epitopes Recognized by Neutralizing Antibodies. Journal of Virology, 2009, 83, 8451-8462.	1.5	92
22	First molecular and biochemical analysis of in vivo affinity maturation in an ectothermic vertebrate. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1846-1851.	3.3	91
23	Crystallographic Identification of Lipid as an Integral Component of the Epitope of HIV Broadly Neutralizing Antibody 4E10. Immunity, 2016, 44, 21-31.	6.6	87
24	Complete epitopes for vaccine design derived from a crystal structure of the broadly neutralizing antibodies PGT128 and 8ANC195 in complex with an HIV-1 Env trimer. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 2099-2108.	2.5	69
25	Structure of 2G12 Fab ₂ in Complex with Soluble and Fully Clycosylated HIV-1 Env by Negative-Stain Single-Particle Electron Microscopy. Journal of Virology, 2014, 88, 10177-10188.	1.5	67
26	Lipid interactions and angle of approach to the HIV-1 viral membrane of broadly neutralizing antibody 10E8: Insights for vaccine and therapeutic design. PLoS Pathogens, 2017, 13, e1006212.	2.1	58
27	Role of the CBP catalytic core in intramolecular SUMOylation and control of histone H3 acetylation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5335-E5342.	3.3	56
28	Conservation and diversity in the ultralong third heavy-chain complementarity-determining region of bovine antibodies. Science Immunology, 2016, 1, .	5.6	52
29	Stabilization of amyloidogenic immunoglobulin light chains by small molecules. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8360-8369.	3.3	52
30	Structure of a cleavage-independent HIV Env recapitulates the glycoprotein architecture of the native cleaved trimer. Nature Communications, 2018, 9, 1956.	5.8	50
31	Detect, correct, retract: How to manage incorrect structural models. FEBS Journal, 2018, 285, 444-466.	2.2	49
32	Recurring conformation of the human immunodeficiency virus type 1 gp120 V3 loop. Virology, 2003, 315, 159-173.	1.1	48
33	Cofactor-Mediated Conformational Dynamics Promote Product Release From <i>Escherichia coli</i> Dihydrofolate Reductase via an Allosteric Pathway. Journal of the American Chemical Society, 2015, 137, 9459-9468.	6.6	45
34	Structure of Hepatitis C Virus Envelope Glycoprotein E1 Antigenic Site 314–324 in Complex with Antibody IGH526. Journal of Molecular Biology, 2015, 427, 2617-2628.	2.0	44
35	Structural Insights into the Lipid A Transport Pathway in MsbA. Structure, 2019, 27, 1114-1123.e3.	1.6	41
36	The Unusual Genetics and Biochemistry of Bovine Immunoglobulins. Advances in Immunology, 2018, 137, 135-164.	1.1	36

ROBYN L STANFIELD

#	Article	IF	CITATIONS
37	Oligomannose Glycopeptide Conjugates Elicit Antibodies Targeting the Glycan Core Rather than Its Extremities. ACS Central Science, 2019, 5, 237-249.	5.3	33
38	Antibody Structure. Microbiology Spectrum, 2014, 2, .	1.2	31
39	Selection of nanobodies with broad neutralizing potential against primary HIV-1 strains using soluble subtype C gp140 envelope trimers. Scientific Reports, 2017, 7, 8390.	1.6	31
40	Structural basis of broad HIV neutralization by a vaccine-induced cow antibody. Science Advances, 2020, 6, eaba0468.	4.7	31
41	Crystal structure of the HIV neutralizing antibody 2G12 in complex with a bacterial oligosaccharide analog of mammalian oligomannose. Glycobiology, 2015, 25, 412-419.	1.3	27
42	Defining the Structural Basis for Allosteric Product Release from <i>E. coli</i> Dihydrofolate Reductase Using NMR Relaxation Dispersion. Journal of the American Chemical Society, 2017, 139, 11233-11240.	6.6	27
43	Structural Basis of Pan-Ebolavirus Neutralization by an Antibody Targeting the Glycoprotein Fusion Loop. Cell Reports, 2018, 24, 2723-2732.e4.	2.9	26
44	An alternate conformation of HCV E2 neutralizing face as an additional vaccine target. Science Advances, 2020, 6, eabb5642.	4.7	26
45	Single-component multilayered self-assembling nanoparticles presenting rationally designed glycoprotein trimers as Ebola virus vaccines. Nature Communications, 2021, 12, 2633.	5.8	25
46	X-Ray Crystallographic Studies of Antibody–Peptide Complexes. ImmunoMethods, 1993, 3, 211-221.	0.8	24
47	Functional convergence of a germline-encoded neutralizing antibody response in rhesus macaques immunized with HCV envelope glycoproteins. Immunity, 2021, 54, 781-796.e4.	6.6	23
48	Nucleotide Insertions and Deletions Complement Point Mutations to Massively Expand the Diversity Created by Somatic Hypermutation of Antibodies. Journal of Biological Chemistry, 2014, 289, 33557-33567.	1.6	22
49	Structure-Based Design of a Protein Immunogen that Displays an HIV-1 gp41 Neutralizing Epitope. Journal of Molecular Biology, 2011, 414, 460-476.	2.0	20
50	CH···O Hydrogen Bonds Mediate Highly Specific Recognition of Methylated CpG Sites by the Zinc Finger Protein Kaiso. Biochemistry, 2018, 57, 2109-2120.	1.2	19
51	Structural basis for cooperative regulation of KIX-mediated transcription pathways by the HTLV-1 HBZ activation domain. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10040-10045.	3.3	18
52	Unraveling the mysteries of $\hat{I}^{3}\hat{I}$ T cell recognition. Nature Immunology, 2001, 2, 579-581.	7.0	17
53	Crystallization, sequence, and preliminary crystallographic data for an antipeptide Fab 50.1 and peptide complexes with the principal neutralizing determinant of HIV-1 gpl20. Proteins: Structure, Function and Bioinformatics, 1992, 14, 499-508.	1.5	16
54	50ÂYears of structural immunology. Journal of Biological Chemistry, 2021, 296, 100745.	1.6	15

ROBYN L STANFIELD

#	Article	IF	CITATIONS
55	Specific Recognition of a DNA Immunogen by its Elicited Antibody. Journal of Molecular Biology, 2007, 370, 183-195.	2.0	13
56	Structural basis for differential recognition of phosphohistidine-containing peptides by 1-pHis and 3-pHis monoclonal antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
57	Structural studies of human HIV-1 V3 antibodies. Human Antibodies, 2005, 14, 73-80.	0.6	10
58	The Impact of Sustained Immunization Regimens on the Antibody Response to Oligomannose Glycans. ACS Chemical Biology, 2020, 15, 789-798.	1.6	9
59	Crystal structure determination of antiâ€DNA Fab A52. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1674-1678.	1.5	7
60	A Dynamic Switch in Inactive p38 ^{ĵ3} Leads to an Excited State on the Pathway to an Active Kinase. Biochemistry, 2019, 58, 5160-5172.	1.2	7
61	A Conformational Switch in the Zinc Finger Protein Kaiso Mediates Differential Readout of Specific and Methylated DNA Sequences. Biochemistry, 2020, 59, 1909-1926.	1.2	7
62	The molecular basis of allostery in a facilitated dissociation process. Structure, 2021, 29, 1327-1338.e5.	1.6	6
63	Discovery of Small-Molecule Nonfluorescent Inhibitors of Fluorogen–Fluorogen Activating Protein Binding Pair. Journal of Biomolecular Screening, 2016, 21, 74-87.	2.6	2
64	Determination of Antibody Structures. Methods in Molecular Biology, 2014, 1131, 395-406.	0.4	2
65	Never too late for endothelin. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 45-46.	0.4	2

66 Antibody Structure. , 0, , 49-62.

1