Tae-Lim Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2165510/publications.pdf

Version: 2024-02-01

94269 85405 5,710 116 37 71 citations h-index g-index papers 118 118 118 4189 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A General Model for Selectivity in Olefin Cross Metathesis. Journal of the American Chemical Society, 2003, 125, 11360-11370.	6.6	1,404
2	Controlled Living Ring-Opening-Metathesis Polymerization by a Fast-Initiating Ruthenium Catalyst. Angewandte Chemie - International Edition, 2003, 42, 1743-1746.	7.2	395
3	Cu-Catalyzed Multicomponent Polymerization To Synthesize a Library of Poly(<i>N</i> -sulfonylamidines). Journal of the American Chemical Society, 2013, 135, 3760-3763.	6.6	154
4	Ultrafast Cyclopolymerization for Polyene Synthesis: Living Polymerization to Dendronized Polymers. Journal of the American Chemical Society, 2011, 133, 11904-11907.	6.6	136
5	Living Light-Induced Crystallization-Driven Self-Assembly for Rapid Preparation of Semiconducting Nanofibers. Journal of the American Chemical Society, 2018, 140, 6088-6094.	6.6	116
6	Synthesis of A,B-Alternating Copolymers by Ring-Opening-Insertion-Metathesis Polymerization. Angewandte Chemie - International Edition, 2002, 41, 3839-3841.	7.2	114
7	One-Pot in Situ Fabrication of Stable Nanocaterpillars Directly from Polyacetylene Diblock Copolymers Synthesized by Mild Ring-Opening Metathesis Polymerization. Journal of the American Chemical Society, 2012, 134, 14291-14294.	6.6	99
8	Strategies to Enhance Cyclopolymerization using Third-Generation Grubbs Catalyst. Journal of the American Chemical Society, 2014, 136, 10508-10514.	6.6	89
9	Doubly-dendronized linear polymers. Chemical Communications, 2005, , 5169.	2.2	86
10	Fast Tandem Ring-Opening/Ring-Closing Metathesis Polymerization from a Monomer Containing Cyclohexene and Terminal Alkyne. Journal of the American Chemical Society, 2012, 134, 7270-7273.	6.6	84
11	Synthesis of Dendronized Diblock Copolymers via Ring-Opening Metathesis Polymerization and Their Visualization Using Atomic Force Microscopy. Journal of the American Chemical Society, 2007, 129, 9619-9621.	6.6	83
12	Controlled Living Ring-Opening-Metathesis Polymerization by a Fast-Initiating Ruthenium Catalyst. Angewandte Chemie, 2003, 115, 1785-1788.	1.6	80
13	A Rational Design of Highly Controlled Suzuki–Miyaura Catalyst-Transfer Polycondensation for Precision Synthesis of Polythiophenes and Their Block Copolymers: Marriage of Palladacycle Precatalysts with MIDA-Boronates. Journal of the American Chemical Society, 2018, 140, 4335-4343.	6.6	79
14	Nanostar and Nanonetwork Crystals Fabricated by in Situ Nanoparticlization of Fully Conjugated Polythiophene Diblock Copolymers. Journal of the American Chemical Society, 2013, 135, 17695-17698.	6.6	75
15	Diversity-Oriented Polymerization: One-Shot Synthesis of Library of Graft and Dendronized Polymers by Cu-Catalyzed Multicomponent Polymerization. Journal of the American Chemical Society, 2016, 138, 8612-8622.	6.6	75
16	Preparation of a Library of Poly(<i>N</i> -sulfonylimidates) by Cu-Catalyzed Multicomponent Polymerization. ACS Macro Letters, 2014, 3, 791-794.	2.3	71
17	Tandem ring-closing metathesis reaction with a ruthenium catalyst containing a N-heterocyclic ligand. Chemical Communications, 2001, , 2648-2649.	2.2	70
18	Synthesis of Dendronized Polymers via Macromonomer Approach by Living ROMP and Their Characterization: From Rod-Like Homopolymers to Block and Gradient Copolymers. Macromolecules, 2013, 46, 5905-5914.	2.2	68

#	Article	IF	CITATIONS
19	Ruthenium-Catalyzed Olefin Cross Metathesis of Styrenes as an Alternative to the Heck and Cross-Coupling Reactions. Advanced Synthesis and Catalysis, 2002, 344, 634.	2.1	65
20	Polymer Self-Assembly into Unique Fractal Nanostructures in Solution by a One-Shot Synthetic Procedure. Journal of the American Chemical Society, 2018, 140, 475-482.	6.6	63
21	Tandem Ring-Opening/Ring-Closing Metathesis Polymerization: Relationship between Monomer Structure and Reactivity. Journal of the American Chemical Society, 2013, 135, 10769-10775.	6.6	62
22	Multiple Olefin Metathesis Polymerization That Combines All Three Olefin Metathesis Transformations: Ring-Opening, Ring-Closing, and Cross Metathesis. Journal of the American Chemical Society, 2015, 137, 9262-9265.	6.6	59
23	Cyclopolymerization To Synthesize Conjugated Polymers Containing Meldrum's Acid as a Precursor for Ketene Functionality. ACS Macro Letters, 2012, 1, 1090-1093.	2.3	58
24	Direct Formation of Large-Area 2D Nanosheets from Fluorescent Semiconducting Homopolymer with Orthorhombic Crystalline Orientation. Journal of the American Chemical Society, 2017, 139, 3082-3088.	6.6	58
25	Controlled Living Cascade Polymerization To Make Fully Degradable Sugar-Based Polymers from <scp>d</scp> -Glucose and <scp>d</scp> -Galactose. Journal of the American Chemical Society, 2019, 141, 12207-12211.	6.6	58
26	Synthesis of Functional Polyacetylenes via Cyclopolymerization of Diyne Monomers with Grubbs-type Catalysts. Accounts of Chemical Research, 2019, 52, 994-1005.	7.6	57
27	Synthesis of Rod-Like Dendronized Polymers Containing G4 and G5 Ester Dendrons via Macromonomer Approach by Living ROMP. ACS Macro Letters, 2012, 1, 445-448.	2.3	56
28	Mechanochemical Degradation of Denpols: Synthesis and Ultrasound-Induced Chain Scission of Polyphenylene-Based Dendronized Polymers. Journal of the American Chemical Society, 2018, 140, 8599-8608.	6.6	56
29	Brush Polymers Containing Semiconducting Polyene Backbones: Graft-Through Synthesis via Cyclopolymerization and Conformational Analysis on the Coil-to-Rod Transition. ACS Macro Letters, 2012, 1, 1098-1102.	2.3	55
30	Simple Preparation of Various Nanostructures via <i>in Situ</i> Nanoparticlization of Polyacetylene Blocklike Copolymers by One-Shot Polymerization. Macromolecules, 2015, 48, 1390-1397.	2.2	53
31	Morphologically Tunable Square and Rectangular Nanosheets of a Simple Conjugated Homopolymer by Changing Solvents. Journal of the American Chemical Society, 2019, 141, 19138-19143.	6.6	52
32	Semi-conducting 2D rectangles with tunable length via uniaxial living crystallization-driven self-assembly of homopolymer. Nature Communications, 2021, 12, 2602.	5.8	47
33	From Smart Denpols to Remoteâ€Controllable Actuators: Hierarchical Superstructures of Azobenzeneâ€Based Polynorbornenes. Advanced Functional Materials, 2017, 27, 1606294.	7.8	46
34	Mechanochemical Degradation of Amorphous Polymers with Ball-Mill Grinding: Influence of the Glass Transition Temperature. Macromolecules, 2020, 53, 7795-7802.	2.2	46
35	Controlled cyclopolymerisation of 1,7-octadiyne derivatives using Grubbs catalyst. Chemical Science, 2012, 3, 761-765.	3.7	43
36	Coil-to-Rod Transition of Conjugated Polymers Prepared by Cyclopolymerization of 1,6-Heptadiynes. ACS Macro Letters, 2013, 2, 780-784.	2.3	43

#	Article	IF	CITATIONS
37	Versatile Tandem Ring-Opening/Ring-Closing Metathesis Polymerization: Strategies for Successful Polymerization of Challenging Monomers and Their Mechanistic Studies. Journal of the American Chemical Society, 2016, 138, 2244-2251.	6.6	41
38	Living Polymerization of Monomers Containing <i>endo</i> -Tricyclo[4.2.2.0 ^{2,5}]deca-3,9-diene Using Second Generation Grubbs and Hoveyda–Grubbs Catalysts: Approach to Synthesis of Well-Defined Star Polymers. Macromolecules, 2014, 47, 1351-1359.	2.2	40
39	Universal Suzuki–Miyaura Catalyst-Transfer Polymerization for Precision Synthesis of Strong Donor/Acceptor-Based Conjugated Polymers and Their Sequence Engineering. Journal of the American Chemical Society, 2021, 143, 11180-11190.	6.6	40
40	Multimechanophore Graft Polymers: Mechanochemical Reactions at Backbone–Arm Junctions. Macromolecules, 2019, 52, 9561-9568.	2.2	37
41	Cascade Polymerization via Controlled Tandem Olefin Metathesis/Metallotropic 1,3-Shift Reactions for the Synthesis of Fully Conjugated Polyenynes. Journal of the American Chemical Society, 2017, 139, 11309-11312.	6.6	36
42	Structure and Dynamics of Dendronized Polymer Solutions: Gaussian Coil or Macromolecular Rod?. Macromolecules, 2016, 49, 2731-2740.	2.2	35
43	Highly \hat{l}^2 -Selective Cyclopolymerization of 1,6-Heptadiynes and Ring-Closing Enyne Metathesis Reaction Using Grubbs <i>Z</i> -Selective Catalyst: Unprecedented Regioselectivity for Ru-Based Catalysts. Journal of the American Chemical Society, 2016, 138, 11227-11233.	6.6	35
44	Rapid formation and real-time observation of micron-sized conjugated nanofibers with tunable lengths and widths in 20 minutes by living crystallization-driven self-assembly. Chemical Science, 2020, 11, 8416-8424.	3.7	32
45	Ru-Catalyzed, <i>cis</i> -Selective Living Ring-Opening Metathesis Polymerization of Various Monomers, Including a Dendronized Macromonomer, and Implications to Enhanced Shear Stability. Journal of the American Chemical Society, 2020, 142, 10438-10445.	6.6	31
46	One-pot synthesis of nanocaterpillar structures via in situ nanoparticlization of fully conjugated poly(p-phenylene)-block-polythiophene. Chemical Communications, 2014, 50, 7945-7948.	2.2	30
47	A Dendronized Polymer Is a Single-Molecule Glassâ€. Journal of Physical Chemistry B, 2005, 109, 6535-6543.	1.2	28
48	Living Polymerization Caught in the Act: Direct Observation of an Arrested Intermediate in Metathesis Polymerization. Journal of the American Chemical Society, 2019, 141, 10039-10047.	6.6	28
49	Mechanochemical Reactivity of Bottlebrush and Dendronized Polymers: Solid vs. Solution States. Angewandte Chemie - International Edition, 2021, 60, 18651-18659.	7.2	28
50	Reactivity Studies of Alkoxy-Substituted [2.2]Paracyclophane-1,9-dienes and Specific Coordination of the Monomer Repeating Unit during ROMP. Macromolecules, 2015, 48, 7435-7445.	2.2	27
51	Designing Thermally Stable Conjugated Polymers with Balanced Ambipolar Field-Effect Mobilities by Incorporating Cyanovinylene Linker Unit. Macromolecules, 2016, 49, 2985-2992.	2.2	27
52	Toward Perfect Regiocontrol for \hat{l}^2 -Selective Cyclopolymerization Using a Ru-Based Olefin Metathesis Catalyst. Macromolecules, 2018, 51, 4564-4571.	2.2	27
53	RuPhos Pd Precatalyst and MIDA Boronate as an Effective Combination for the Precision Synthesis of Poly(3-hexylthiophene): Systematic Investigation of the Effects of Boronates, Halides, and Ligands. Macromolecules, 2020, 53, 3306-3314.	2.2	26
54	The influence of polymer architecture in polymer mechanochemistry. Chemical Communications, 2021, 57, 6465-6474.	2.2	26

#	Article	IF	CITATIONS
55	Oneâ€Pot Preparation of 3D Nano―and Microaggregates via In Situ Nanoparticlization of Polyacetylene Diblock Copolymers Produced by ROMP. Macromolecular Rapid Communications, 2015, 36, 1069-1074.	2.0	25
56	Conformation of Tunable Nanocylinders: Up to Sixth-Generation Dendronized Polymers via Graft-Through Approach by ROMP. Macromolecules, 2019, 52, 3342-3350.	2.2	25
57	Synthesis of Conjugated Rod–Coil Block Copolymers by RuPhos Pd-Catalyzed Suzuki–Miyaura Catalyst-Transfer Polycondensation: Initiation from Coil-Type Polymers. Macromolecules, 2020, 53, 5497-5503.	2.2	25
58	Mechanochemical Degradation of Brush Polymers: Kinetics of Ultrasound-Induced Backbone and Arm Scission. Macromolecules, 2020, 53, 1623-1628.	2.2	25
59	Dimensionally controlled water-dispersible amplifying fluorescent polymer nanoparticles for selective detection of charge-neutral analytes. Polymer Chemistry, 2017, 8, 7507-7514.	1.9	24
60	Understanding the Origin of the Regioselectivity in Cyclopolymerizations of Diynes and How to Completely Switch It. Journal of the American Chemical Society, 2018, 140, 834-841.	6.6	24
61	Cascade polymerizations: recent developments in the formation of polymer repeat units by cascade reactions. Chemical Science, 2020, 11, 4843-4854.	3.7	24
62	A stereoregular \hat{l}^2 -dicyanodistyrylbenzene (\hat{l}^2 -DCS)-based conjugated polymer for high-performance organic solar cells with small energy loss and high quantum efficiency. Journal of Materials Chemistry A, 2017, 5, 16681-16688.	5. 2	23
63	Preparation of defect-free nanocaterpillars via in situ nanoparticlisation of a well-defined polyacetylene block copolymer. RSC Advances, 2014, 4, 49180-49185.	1.7	22
64	Iridium atalyzed Direct Câ^'H Amidation Polymerization: Stepâ€Growth Polymerization by Câ^'N Bond Formation via Câ^'H Activation to Give Fluorescent Polysulfonamides. Angewandte Chemie - International Edition, 2017, 56, 14474-14478.	7.2	22
65	Preparing Semiconducting Nanoribbons with Tunable Length and Width via Crystallization-Driven Self-Assembly of a Simple Conjugated Homopolymer. Journal of the American Chemical Society, 2018, 140, 17218-17225.	6.6	22
66	Powerful Direct Câ€"H Amidation Polymerization Affords Single-Fluorophore-Based White-Light-Emitting Polysulfonamides by Fine-Tuning Hydrogen Bonds. Journal of the American Chemical Society, 2022, 144, 1778-1785.	6.6	22
67	Controlled cyclopolymerization of 4,5â€disubstituted 1,7â€octadiynes and its application to the synthesis of a dendronized polymer using <scp>G</scp> rubbs catalyst. Journal of Polymer Science Part A, 2015, 53, 274-279.	2.5	21
68	Mechanistic Investigations on the Competition between the Cyclopolymerization and $[2 + 2 + 2]$ Cycloaddition of 1,6-Heptadiyne Derivatives Using Second-Generation Grubbs Catalysts. Macromolecules, 2016, 49, 6240-6250.	2.2	21
69	A one-pot synthesis of polysulfane-bearing block copolymer nanoparticles with tunable size and refractive index. Chemical Communications, 2016, 52, 2485-2488.	2.2	21
70	Superior Cascade Ring-Opening/Ring-Closing Metathesis Polymerization and Multiple Olefin Metathesis Polymerization: Enhancing the Driving Force for Successful Polymerization of Challenging Monomers. Journal of the American Chemical Society, 2018, 140, 10536-10545.	6.6	21
71	Sugarâ€Based Polymers from <scp>d</scp> â€Xylose: Living Cascade Polymerization, Tunable Degradation, and Small Molecule Release. Angewandte Chemie - International Edition, 2021, 60, 849-855.	7.2	21
72	Faster cyclopolymerisation of 4,4-disubstituted 1,7-octadiynes through an enhanced Thorpe–Ingold effect. Polymer Chemistry, 2013, 4, 4676.	1.9	20

#	Article	IF	CITATIONS
73	Perpendicularly Oriented Block Copolymer Thin Films Induced by Neutral Star Copolymer Nanoparticles. ACS Macro Letters, 2015, 4, 133-137.	2.3	20
74	Successful Cyclopolymerization of 1,6-Heptadiynes Using First-Generation Grubbs Catalyst Twenty Years after Its Invention: Revealing a Comprehensive Picture of Cyclopolymerization Using Grubbs Catalysts. Macromolecules, 2017, 50, 3153-3163.	2.2	20
75	Seven-Membered Ring-Forming Cyclopolymerization of 1,8-Nonadiyne Derivatives Using Grubbs Catalysts: Rational Design of Monomers and Insights into the Mechanism for Olefin Metathesis Polymerizations. Macromolecules, 2017, 50, 2724-2735.	2.2	20
76	N-Containing 1,7-Octadiyne Derivatives for Living Cyclopolymerization Using Grubbs Catalysts. ACS Macro Letters, 2014, 3, 795-798.	2.3	19
77	Hierarchical superstructures of norbornene-based polymers depending on dendronized side-chains. Polymer Chemistry, 2016, 7, 5304-5311.	1.9	19
78	Preparing DNA-mimicking multi-line nanocaterpillars <i>via in situ</i> nanoparticlisation of fully conjugated polymers. Polymer Chemistry, 2016, 7, 1422-1428.	1.9	19
79	Precision Synthesis of Various Lowâ€Bandgap Donor–Acceptor Alternating Conjugated Polymers via Living Suzuki–Miyaura Catalystâ€₹ransfer Polymerization. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
80	Importance of choosing the right polymerization method for in situ preparation of semiconducting nanoparticles from the P3HT block copolymer. Polymer Chemistry, 2016, 7, 7135-7141.	1.9	17
81	Spontaneous evolution of nanostructures by lightâ€driven growth of micelles obtained from <i>in situ</i> nanoparticlization of conjugated polymers. Journal of Polymer Science Part A, 2017, 55, 3058-3066.	2.5	17
82	Accelerated Ring-Opening Metathesis Polymerization of a Secondary Amide of 1-Cyclobutene by Hydrogen-Bonding Interaction. Organic Letters, 2011, 13, 3908-3911.	2.4	16
83	Controlled Ring-Opening Metathesis Polymerization of a Monomer Containing Terminal Alkyne and Its Versatile Postpolymerization Functionalization via Click Reaction. Macromolecules, 2014, 47, 4525-4529.	2.2	16
84	Fast Living Polymerization of Challenging Aryl Isocyanides Using an Air-Stable Bisphosphine-Chelated Nickel(II) Initiator. Macromolecules, 2018, 51, 7800-7806.	2.2	16
85	Influence of Grafting Density on Ultrasound-Induced Backbone and Arm Scission of Graft Copolymers. Macromolecules, 2021, 54, 4219-4226.	2.2	16
86	Synthesis of Functional Block Copolymers Carrying One Poly(<i>p</i> p-phenylenevinylene) and One Nonconjugated Block in a Facile One-Pot Procedure. Macromolecules, 2016, 49, 2085-2095.	2.2	15
87	Living Metathesis and Metallotropy Polymerization Gives Conjugated Polyenynes from Multialkynes: How to Design Sequence-Specific Cascades for Polymers. Journal of the American Chemical Society, 2018, 140, 16320-16329.	6.6	15
88	Synchronous Preparation of Length-Controllable 1D Nanoparticles via Crystallization-Driven <i>In Situ</i> Nanoparticlization of Conjugated Polymers. Journal of the American Chemical Society, 2022, 144, 5921-5929.	6.6	15
89	Living \hat{I}^2 -selective cyclopolymerization using Ru dithiolate catalysts. Chemical Science, 2019, 10, 8955-8963.	3.7	14
90	Controlled Cyclopolymerization of 1,5-Hexadiynes to Give Narrow Band Gap Conjugated Polyacetylenes Containing Highly Strained Cyclobutenes. Journal of the American Chemical Society, 2020, 142, 17140-17146.	6.6	14

#	Article	IF	Citations
91	Preference of Ruthenium-Based Metathesis Catalysts toward <i>Z</i> - and <i>E</i> - Alkenes as a Guide for Selective Reactions to Alkene Stereoisomers. Journal of Organic Chemistry, 2016, 81, 7591-7596.	1.7	12
92	Iridium-Catalyzed Direct C–H Amidation Producing Multicolor Fluorescent Molecules Emitting Blue-to-Red Light and White Light. Organic Letters, 2020, 22, 2935-2940.	2.4	12
93	Swelling-induced pore generation in fluorinated polynorbornene block copolymer films. Polymer Chemistry, 2018, 9, 3536-3542.	1.9	11
94	Direct formation of nano-objects <i>via in situ</i> self-assembly of conjugated polymers. Polymer Chemistry, 2021, 12, 1393-1403.	1.9	11
95	Magnetically recyclable Pdâ€Fe ₃ O ₄ heterodimer nanocrystals for the synthesis of conjugated polymers via suzuki polycondensation: Toward green chemistry. Journal of Polymer Science Part A, 2014, 52, 1525-1528.	2.5	10
96	Multi-scale Structure and Dynamics of Dendronized Polymers with Varying Generations. Macromolecules, 2021, 54, 235-248.	2.2	10
97	Constructing a Library of Doubly Grafted Polymers by a One-Shot Cu-Catalyzed Multicomponent Grafting Strategy. Macromolecules, 2021, 54, 5539-5548.	2.2	10
98	Conformational Analysis of Oxygen-Induced Higher Ordered Structure of A, B-Alternating Poly(arylene vinylene) Copolymers by Solid-State NMR and Molecular Dynamics Simulations. Macromolecules, 2016, 49, 3061-3069.	2.2	9
99	Recent Advances in Diversityâ€Oriented Polymerization Using Cuâ€Catalyzed Multicomponent Reactions. Macromolecular Rapid Communications, 2022, 43, e2100642.	2.0	9
100	Building supermicelles from simple polymers. Science, 2015, 347, 1310-1311.	6.0	8
101	Modulating the Rate of Controlled Suzuki–Miyaura Catalyst-Transfer Polymerization by Boronate Tuning. Macromolecules, 2022, 55, 3476-3483.	2.2	8
102	Unusual Superior Activity of the First Generation Grubbs Catalyst in Cascade Olefin Metathesis Polymerization. ACS Macro Letters, 2018, 7, 531-535.	2.3	7
103	Fabrication of Semiconducting Nanoribbons with Tunable Length and Width via Crystallization-Driven Self-Assembly of a Homopolymer Prepared by Cyclopolymerization Using Grubbs Catalyst. Macromolecules, 2022, 55, 3484-3492.	2.2	7
104	Polymers producing hydrogen. Nature Chemistry, 2020, 12, 1093-1095.	6.6	6
105	Tandem diaza-Cope rearrangement polymerization: turning intramolecular reaction into powerful polymerization to give enantiopure materials for Zn ²⁺ sensors. Chemical Science, 2021, 12, 2404-2409.	3.7	6
106	Iridiumâ€Catalyzed Direct Câ^'H Amidation Polymerization: Stepâ€Growth Polymerization by Câ^'N Bond Formation via Câ^'H Activation to Give Fluorescent Polysulfonamides. Angewandte Chemie, 2017, 129, 14666-14670.	1.6	5
107	Synthesis of Conjugated Polyenynes with Alternating Six- and Five-Membered Rings via \hat{I}^2 -Selective Cascade Metathesis and Metallotropy Polymerization. ACS Macro Letters, 2020, 9, 339-343.	2.3	5
108	Library of Fluorescent Polysulfonamides and Polyamide Synthesized by Iridium-Catalyzed Direct C–H Amidation Polymerization. Macromolecules, 2018, 51, 7476-7482.	2.2	4

#	Article	IF	CITATIONS
109	Mechanochemical Reactivity of Bottlebrush and Dendronized Polymers: Solid vs. Solution States. Angewandte Chemie, 2021, 133, 18799-18807.	1.6	4
110	Binaphthyl-incorporated π-conjugated polymer/gold nanoparticle hybrids: a facile size- and shape-tailored synthesis. RSC Advances, 2016, 6, 107994-107999.	1.7	3
111	Spectroscopy and excited state dynamics of nearly infinite polyenes. Physical Chemistry Chemical Physics, 2020, 22, 17867-17879.	1.3	3
112	Sugarâ€Based Polymers from d â€Xylose: Living Cascade Polymerization, Tunable Degradation, and Small Molecule Release. Angewandte Chemie, 2021, 133, 862-868.	1.6	3
113	Synthesis of Wellâ€Defined Poly(norbornene) Containing Carbon Nanodots by Controlled ROMP. Journal of Polymer Science, 2020, 58, 48-51.	2.0	2
114	Precision Synthesis of Various Lowâ€Bandgap Donor–Acceptor Alternating Conjugated Polymers via Living Suzuki–Miyaura Catalystâ€Transfer Polymerization. Angewandte Chemie, 2022, 134, .	1.6	1
115	Light Switches: From Smart Denpols to Remoteâ€Controllable Actuators: Hierarchical Superstructures of Azobenzeneâ€Based Polynorbornenes (Adv. Funct. Mater. 18/2017). Advanced Functional Materials, 2017, 27, .	7.8	0
116	Titelbild: Sugarâ€Based Polymers from <scp>d</scp> â€Xylose: Living Cascade Polymerization, Tunable Degradation, and Small Molecule Release (Angew. Chem. 2/2021). Angewandte Chemie, 2021, 133, 521-521.	1.6	0